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ABSTRACT " el "

Graph partitioning is crucial to parallel computations on e o S

large graphs. The choice of partitioning strategies has strong (d) G

impact on not only the performance of graph algorithms, O B Bou g,

but also the design of the algorithms. For an algorithm of Us Y2 el

our interest, what partitioning strategy fits it the best and b b bt oty to0 e e—e el
(b) a balanced edge-cut of G, {¢) a vertex-cut of G

improves its parallel execution? Is it possible to develop
graph algorithms with partition transparency, such that the
algorithms work under different partitions without changes?

This paper aims to answer these questions. We propose an
application-driven hybrid partitioning strategy that, given a
graph algorithm A, learns a cost model for A as polynomial
regression. We develop partitioners that given the learned
cost model, refine an edge-cut or vertex-cut partition to a
hybrid partition and reduce the parallel cost of A. Moreover,
we identify a general condition under which graph-centric
algorithms are partition transparent. We show that a number
of graph algorithms can be made partition transparent. Using
real-life and synthetic graphs, we experimentally verify that
our partitioning strategy improves the performance of a
variety of graph computations, up to 22.5 times.
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Figure 1: CN and TC
1 INTRODUCTION

To handle real-life graphs, graph partitioning is often a must.
It is to cut a large graph G into smaller fragments and distrib-
ute the fragments to a cluster of processors (a.k.a. workers)
so that the workers have even workload for parallel compu-
tations and their communication is minimized.

A number of partitioning algorithms (a.k.a. partitioners)
are already developed. These algorithms are often either edge-
cut [5, 27], which evenly partitions vertices and cuts edges,
or vertex-cut [9, 19, 28], which evenly partitions edges by
replicating vertices. There have also been hybrid partitioners,
which cut both edges and vertices [13, 15, 30, 51].

These partitioners typically follow two quality criteria, bal-
ance and replication factors. To balance workload and reduce
synchronization overhead, a partitioner often seeks to cut a
graph into fragments of “even” sizes, and reduce replicated
edges and vertices. In the real world, however, such criteria
do not always capture the bottleneck factors that affect the
performance of parallel graph algorithms, since the compu-
tation and communication patterns of algorithms vary.

Example 1: Consider the following real-life examples.

(1) Common neighbor. Consider running Common Neighbor
(CN) [31] on a directed graph G; shown in Fig. 1(a). CN
computes the number of common neighbors for each pair
of vertices. It is widely used in link prediction, product rec-
ommendation and fraud detection [14, 31]. To simplify the
discussion, we consider outgoing common neighbors, where
a vertex u is an outgoing common neighbor of v; and v if
there exist edges from v; and v; to u. A common program
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of CN works as follows: for each triple (u, vy, v3) such that
both v; and v; link to u, it increases the common neighbor
count for the pair (v1, v3). Suppose that G is partitioned
into fragments F; and F, as shown in Fig. 1(b). The partition
is well balanced w.r.t. both vertices and edges, since each
fragment has 5 inner vertices (solid discs) and 9 edges.

(a) However, the workload of CN on the partition of Fig. 1(b)
is skewed. For the program of CN above, each vertex u
contributes at most %d+(u)(d+(u) — 1) triples of the form
(u, v1,v2), where d*(u) denotes the in-degree of node u, and
vy and v, are incoming neighbors of u. Thus the computa-
tional cost on a fragment F; is determined by the aggregation
YueF, %d+(u)(d+(u) —1). As a result, the workloads on F;
and F, are 10 and 2, respectively. That is, the maximum load
of CN is 5X of the minimum one, even when the partition of
Fig. 1(b) is balanced w.r.t. both vertices and edges.

(b) Figure 1(c) depicts another partition of G;. The vertices
and edges are not as balanced as that of Fig. 1(b) since F; has
3 vertices and 6 edges, while F; has 7 vertices and 11 edges.
This said, the workloads of CN on F; and F, are both 6,
which are well balanced. Taken together with Fig. 1 (b), this
shows that static metrics such as vertex and edge balance do
not ensure workload balance for applications such as CN.

(2) Triangle counting. Consider counting all triangles (TC) in
the undirected graph G, of Fig. 1(d). TC has been used in
clustering [46], cycle detection [22] and transitivity [34]. A
program of TC works as follows: for each node v and each
edge (v, u) of v, it counts the number of triangles that involve
the edge (v, u) (see Section 7.2 for more details). Graph G,
is vertex cut evenly into F; and F, by splitting v, and vy, as
depicted in Fig. 1(e). Observe the following.

(a) Communication is required when not all neighbors of a
vertex are stored locally, i.e., split vertices v, and vg. Let N =
{v1,v3,vs} be the set of neighbors of v,; to count triangles
involving v, all pairs of vertices in N X N must be checked.
It has to inspect the remote edge (v;, v3); similarly for vy.

(b) Replication helps reduce communication cost. Consider
the partition of G, of Fig. 1(f). As opposed to Fig. 1(e), it repli-
cates a vertex vs and an edge (v;, v3) at F;. When running
program TC on it, to count triangles of v, no communica-
tion is needed since all verification can be done locally. To
reduce communication when counting triangles of vy, one
can further replicate edge (vs, v9) and vertex vg at F,. O

Worse still, an algorithm developed under an edge-cut par-
tition may not work under vertex-cut, and vice versa. Hence,
when developing a parallel algorithm for a graph computa-
tion problem, one has to pick which partitioning strategy to
use in advance. We may have to rewrite our algorithms and
switch to the other if the strategy picked does not work well.

Example 2: Consider PageRank [10]. In each iteration, each
vertex collects the page-rank score of its incoming neighbors,
and updates its own score accordingly. It is easy to write such
an algorithm under edge-cut partition in which each vertex
keeps its incoming edges [16]. However, the algorithm does
not work on a vertex-cut partition since vertices may not
have all its incoming edges locally. The algorithm has to be
rewritten to gather incoming scores in advance or introduce
a nontrivial aggregation mechanism (see Section 7.3). O

These examples give rise to several questions. For an al-
gorithm A of our interest, what parameters should we con-
sider to partition graphs for A? After all, the primary goal
is to improve parallel execution of A no matter whether the
partition is edge-cut, vertex-cut or hybrid, regardless of its
balance ratio and replication factor. Can we learn partition
parameters for A? If so, how can we partition graphs based
on the learned parameters? Moreover, can we make A work
under different partitions without requiring any change?

Contributions & organization. This paper aims to answer
these questions. We propose an application-driven partition-
ing strategy, and a notion of partition transparency.

(1) Application-driven partitioning (Section 3). We propose
a hybrid partitioning strategy to find partitions tailored for
a graph algorithm A. We introduce a cost model to charac-
terize the computational and communication patterns of A.
We formalize the application-driven partition problem (ADP),
which aims to find a partition that reduces the cost of A
based on its cost model. We show that ADP is NP-complete.

(2) Cost model learning (Section 4). We show how to learn
the cost model for a given algorithm A. We approximate the
cost model as polynomial regression following [47], which
has proven effective in practice [21]. We train the model with
the stochastic gradient descent algorithm. The learned cost
model can be applied to different graphs on which A runs.

(3) Hybrid partitioners (Section 5). We develop parallel par-
titioners ParE2H and ParV2H that given algorithm A and
a graph G, develop a hybrid partition of G for A guided by
the learned cost model of A. We show that ParE2H (resp.
ParV2H) refines an edge-cut (resp. vertex-cut) to a hybrid
partition that accommodates the cost patterns of A.

(4) Partition transparency (Section 6). We identify a condi-
tion under which an algorithm A is guaranteed partition
transparent, i.e., A works under edge-cut, vertex-cut and hy-
brid partitions without requiring any change to A. We prove
the condition for graph-centric programs of GRAPE [17] and
vertex-centric programs of PowerGraph [19]. Note that this
condition is not mandatory for our approach. Our approach
can handle non-transparent A (see Section 5). Moreover, one
can rewrite A and make it transparent (Section 7).




(5) Transparent algorithms (Section 7). As case studies, we

develop partition transparent algorithms for common neigh-
bor (CN), triangle counting (TC) and PageRank (PR). They
work correctly no matter what partitions are used.

(6) Experimental study (Section 8). Using real-life and
synthetic graphs, we empirically verify the effectiveness,
scalability and efficiency of ParE2H and ParV2H. We find the
following. (a) The application-driven partitioners are effec-
tive. Over real-life graphs, they improve the performance of
CN, TC and PR by 7.0, 4.6 and 2.8 times on average, respec-
tively, up to 22.5 times. (b) They are efficient, taking 11.9%
and 11.3% of the total partitioning time on average to refine
edge-cut and vertex-cut partitions, respectively. (c) They
scale well with graphs, taking 59.7s and 32.5s, respectively,
on graphs of 500M vertices and 6B edges, with 96 workers.
(d) With small training cost, the learned cost models are
accurate, with MSRE (mean squared relative error) < 0.11.

Related work. Various algorithms have been developed for
edge-cut and vertex-cut partitions (see [7, 11] for surveys).
Edge-cut (resp. vertex-cut) aims to partition vertices (resp.
edges) into disjoint subsets of even sizes and reduce replica-
tion. Exact edge-cut algorithms of [5, 29] compute balanced
partitions and cut minimum edges. METIS [25, 26] and its
parallel version ParMETIS [24] adopt a multi-level heuristic
scheme and are edge-cut partitioners widely used in prac-
tice. Other popular heuristics include parallel partitioners
such as XtraPuLP [43] and stream partitioners FENNEL [44].
Vertex-cut partitioners include spectral algorithm of [39] and
heuristics Grid [23], SHEEP [32], NE [49] and HDRF [38].

Edge-cut promotes locality: for each vertex v in graph G,
it keeps all edges emanating from v in the same fragment;
however, it often leads to imbalanced partitions, especially
when G is skewed, i.e., when a small portion of G connects to
a large fraction of G. In contrast, vertex-cut makes it easier
to balance partitions, but may have a lower level of locality
and increase communication cost for low-degree vertices.

To rectify these, there has been work on hybrid partition-
ers. PowerLyra [13] and IOGP [15] combine edge-cut and
vertex-cut by cutting only high-degree vertices, controlled
by a user-defined threshold. TopoX [30] not only splits high-
degree vertices, but also merges neighboring low-degree
vertices into super nodes to prevent splitting such vertices.
Gemini [51] and MDBGP [6] balance hybrid workload by
combining vertex and edge loads based on a balancing metric.

There have also been attempts [20, 33, 48] to speed up
distributed graph computations by replicating various parts
of graphs across partitions, such that read operations can be
performed locally without communication.

This work differs from the prior methods in the following.

(1) This work is the first study of partition transparency and

provides the first condition under which graph algorithms
are transparent to underlying partitions (Section 6).

(2) We propose an application-driven partitioning strategy
that given an algorithm (A, learns a cost model beyond bal-
ance and replication, such that we can tailor graph partitions
to speed up parallel execution of A (Sections 3, 4 and 5).

(3) As opposed to prior hybrid partitioners, our partition-
ers are guided by a cost model of a given algorithm A, and
generate partitions tailored for the best performance of A
(Section 5). We show that such partitions can be readily
computed by extending existing edge-cut or vertex-cut par-
titioners, i.e., there is no need to develop another partitioner
starting from scratch. In addition, the partitioners strike a
balance between replication and computation speedup.

(4) We develop the first ML models that train cost models
for given algorithms (Section 4), as opposed prior parti-
tioners that adopt one-size-fits-all static metrics, follow
intuitions [30, 51] or manually pick parameters [6, 13, 15].

2 PRELIMINARIES

We start with a review of basic notations. We consider
(un)directed graphs G = (V,E), where V is a finite set of
vertices, and E C V X V is its set of edges.

Partitions. Given a natural number n, a n-cut hybrid parti-
tion HP(n) = (Fi, . . ., F,) of a graph G, or simply a partition
of G, divides G into n small fragments Fj, ..., F,, such that
@ Fi = (Vi Ea), (b) V = Ui, Vi and (¢) E = UL, Ei.

Denote by E° (resp. E) the set of edges incident to vertex
v in G (resp. F;). We also use the following notations.

(1) A vertex v is v-cut in HP(n) if the set of edges incident to
v is not “complete” at any F;, i.e, EY # E} (Vi € [1, n]). Each
copy of such v in HP(n) is called a v-cut node of v.

(2) A vertex v is e-cut if there exists a fragment F; such that
all edges incident to v are included in F;, i.e, EY = EY. When
there exist multiple copies of v in HP(n), we refer to the copy
in F; as an e-cut node and the others as dummy nodes of v.

(3) Denote by F;.0 = {v € V; | v € V; Ai # j} the set of
border nodes of F;. Intuitively a border node is replicated
among fragments. Let 7.0 = [J; F;.O. We associate a
master node mapping with HP(n) for vertices in #.0. More
specifically, for each vertex v € F.0, the mapping treats one
copy of v as its master and the other copies as its mirrors.

Example 3: Consider the hybrid partition (F;, F;) depicted
in Fig. 1(f) of graph G, of Fig. 1(d). Observe the following.
(1) Vertex vy is v-cut since edge (v, v5) and (vg, v19) are miss-
ing from fragment Fy, and edge (vy, vs) is missing from F,.
(2) Vertex v is e-cut, since all edges incident to v, are in-
cluded in F;. The copy of v, at F; is an e-cut node, while



G, F; graph and a fragment of G

Vi (resp. E;) the vertex set (resp. edge set) of fragment F;

E? (resp. EY) the set of edges incident to v in G (resp. F;)

F;.O (resp. .0) the set of border nodes in F; (resp. HP(n))

df,d;,d5, d;, D | various vertex degree metrics (Section 3.1)

ha, ga cost functions of A (Section 3.1)
C ; (Fy), CZ”rI (F;) | computational and communication cost of F;
Ca(F;) the cost of A on F;

Table 1: Notations

the copy at F; is a dummy node. Similarly v5 is also e-cut.
Vertices vy, vy, Us, U, U7, Us, V19 are also e-cut since they are
not replicated and edges incident to them are all kept locally.
(3) F1.0 = F,.0 = {vy, v3,09}; thus F.0 = {vy,v3,09}. If a
master node mapping maps v; and vs of F; and vy of F, as
masters, then vy and v3 of F, and vy of F; are mirrors. O

Special cases. Two special cases of hybrid partitions are
edge-cut partitions [5, 27] and vertex-cut partitions [19, 28].

(1) Partition HP(n) is edge-cut if (i) all vertices are e-cut; and
(ii) the e-cut node sets of the fragments are pairwise disjoint.

(2) Partition HP(n) is vertex-cut if the edge sets are disjoint,
ie,E;NE; = 0fori# j, while v-cut nodes are replicated.

Example 4: Consider the hybrid partitions depicted in Fig. 1.

(1) The partition (Fy, F,) depicted in Fig. 1(b) is an edge-cut
partition of graph G; given in Fig. 1(a), since (i) all vertices
of G, are e-cut; and (ii) the e-cut node sets of F; and F, are
disjoint, i.e., {1, $2, t1, to, t3} N {s3, $4, S5, L4, t5} = 0. Note that
the e-cut (resp. dummy) nodes are depicted as black (resp.
white). Another edge-cut partition of G; is shown in Fig. 1(c).
(2) Partition (Fy, F) of Fig. 1(e) is a vertex-cut partition of G,
given in Fig. 1(d), since the edge sets of F; and F; are disjoint.
(3) Partition (Fy, F;) of Fig. 1(f) is neither edge-cut (since vy
is v-cut) nor vertex-cut (since edge (vs, v3) is replicated). O

Quality. The partition quality of hybrid partition HP(n) is
traditionally characterized by two factors defined as follows.
Replication ratio. Denote by f, = X7, |Vi|/|V| the vertex
replication ratio, and by f, = I, |E;|/|E| the edge replica-
tion ratio. Usually vertex-cut partitioning aims to minimize
fv and edge-cut partitioning aims to minimize f,, since the
number of v-cut nodes and cut-edges can be expressed as
(fo — D|V| (vertex-cut) and (f, — 1)|E| (edge-cut).

Balance factor. A hybrid partition HP(n) is said A,-balanced
wrt.verticesif |Vi| < (1+4y) X7, |Vjl/nforalli € [1,n], ie,
the number of vertices of each fragment is not too deviated
from the average. Similarly, HP(n) is A.-balanced w.r.t. edges
if |Ei| < (14 4e) X7y |Ejl/nforalli € [1,n].

The notations of this paper are summarized in Table 1.

3 APPLICATION DRIVEN PARTITIONING

The primary goal of partitioners is to speed up parallel
computations of our interest. As shown in Example 1, tradi-
tional metrics such as replication ratio and balance factor do
not suffice to capture the variety of computational and com-
munication patterns of graph algorithms. Hence, a partition
that fits one algorithm may not work well for another.

This motivates us to propose an application-driven parti-
tioning strategy. We first introduce a model that captures the
computational and communication patterns of a given algo-
rithm A (Section 3.1). We then present a partitioning strategy
that partitions graphs to minimize the parallel computation
cost of A based on the cost model of A (Section 3.2).

3.1 A Cost Model

Given a graph algorithm A, we estimate the cost of A under
a partition HP(n) of a graph G in terms of a computation cost
function hg and a communication cost function g4.

Cost model. Let X = {x;,...,x;} be a set of metric vari-
ables, where each x; € X is associated with a vertex metric
in HP(n) to be given shortly. Functions h 4 and g4 are two
multivariate functions over X. Given a vertex v, h# and g4
estimate the computational cost hz(X(v)) and communica-
tion cost g#(X(v)) incurred by v, respectively. Denote by
C’;( (F;) and Cé(Fi) the computational cost and communica-
tion cost of algorithm A on fragment F;, respectively. Then
the cost of A on fragment F; is estimated as
Cal(F;) = Cly(F;) + CH(F). (1)
We next show how to estimate costs Cé’l{ (F;) and C;(F,-)
of A on fragment F; using cost functions h# and g 4.

Computational cost C’;[(F,-). On fragment F;, we define

Cla(F:) = 2. haX@). ()
veF;Av is a non-dummy node
Intuitively, the computational cost of A on a fragment F; is
amortized among its e-cut and v-cut nodes (i.e., non-dummy
nodes, see Section 2), and C;l (F;) is the aggregation of the
costs incurred by its vertices estimated by h..

Communication cost C;(Fi). Unlike C;(F,-), C;(F,-) is usu-
ally incurred by vertices replicated in HP(n). Here we mea-
sure the communication cost incurred by master nodes:
Coy(Fi) = D gaX@) )
v€EF;.OAv is a master node
Intuitively, for a vertex v € F;.O, its communication and
synchronization often take place at its master copy, which is
responsible for receiving possible updates from its mirrors
and sending the aggregation back to its mirrors [17, 19].

Remark. (a) While computational cost is amortized among
vertices, the cost model is applicable to not only vertex-
centric models, but also edge-centric [42] and graph-centric



[17] models; e.g., edge-centric algorithms access the data
of the endpoints of edges, although the computation is dis-
tributed on edges. Thus we can use the sum of amortized cost
on each vertex to approximate the total computational cost.

(b) In Eq. (1), the communication cost does not include the
part overlapped with computation, i.e., it only measures the
non-overlapping time. Under synchronous parallel model
(BSP), each round starts with a computation phase followed
by a communication phase, and the overlap is small. Under
asynchronous model, CZ_,[ (F;) excludes overlap.

Metric variables. We next identify a set X of vertex metric
variables that affect the computational and communication
costs of most graph algorithms. For a vertex v in fragment
F; = (V3, E;), X includes the following metric variables:

o df(v) = {u| (u,v) € E;}|, i.e, the in-degree of v in Fj;

o d; (v) = {u | (v,u) € E;}|, i.e, the out-degree of v in F;;

o d5(v) = {u | (u,v) € E}|, ie, the in-degree of v in G;

o d;(v) = [{u | (v,u) € E}|, i.e, the out-degree of v in G;

or(v)={jlveV;Aj+# i}, ie, the number of mirrors

of v among all fragments;
o D=3,evdi(0)/IVI=Xyev dg(v)/|V], ie., the average
in/out degree of G, which is a constant metric for v.

For undirected graphs, dj (v) = d} (v) and dj,(v) = d(v).

Intuitively, the metric variables above have impact on the
computational and communication cost incurred by a vertex.
For instance, d} (v) (resp. d (v)) determines the number of in-
coming (resp. outgoing) neighbors that v may access during
computation; r(v) decides whether synchronization is nec-
essary; d(v), d;(v) and D may affect the size of messages
synchronized between the master of v and its mirrors.

In the sequel we use the following metric variable set:
X ={d}f,d;,d},dg,r,D}.

Note that X above only includes variables that affect the cost
of most graph algorithms. For a specific algorithm A, one
can either extend X or pick a subset of X, depending on A.

Example 5: The cost functions for CN and TC on a partition
HP(n) = (Fy, ..., F,) can be defined as follows.

(1) hen = adf (v)d(v) + Bdf (v) +y and gen = Dd(v) for
some positive @, B, y and 8. Function hcy indicates that in an
edge-cut partition (i.e., dj (v) = d;(v)), the computation cost
of a vertex v is dominated by the “square” of its incoming
degree (recall Example 1). Function gcyn estimates the com-
munication cost incurred by a master. That is, given a vertex
v, the number of triples (v, w, u) to be aggregated can be esti-
mated by Dd(v), where w is a common neighbor of v and u.

(2) hrc=ad{ (v)+pd;] (v)d}(v) and grc=yI(v)d(v)r(v) for
some positive @,  and y. Here I(v) is an e-cut indicator
such that I(v)=1 if v is not an e-cut node in F;, and I(v)=0

otherwise. To avoid counting the same triangles repeatedly,
we only check the neighbors of v with smaller degrees (see
Section 7.2). Then, (a) hrc estimates the cost for checking
the neighbors of v, ad] (v) is for searching the small-degree
neighbors of v, and Bd} (v)d(,(v) is for counting triangles
with these neighbors; (b) grc estimates communication in-
curred by v. If v is an e-cut node, then its computation can
be done locally; if v is a v-cut or dummy node, then extra
communication for verifying neighbors of v is proportional
to d(v)r(v). Based on grc, to reduce the communication of
TC, we make more vertices e-cut as indicated in Fig. 1(f). O

Balance factor revised. Incorporating parallel computation
cost, we revise balance factor. For an algorithm A, we say
that a partition HP(n) of graph G is A-balanced for A if

Ca(Fi) < (1+ ) Y CalFy)/n (Vi € [1,n)).

Jj=1
That is, the cost of A on each fragment is not far from the
average. Here C #(F;) is the cost of A on F; (see Equation (1)).

Example 6: Continuing with Example 5, under an edge-cut
partition, the computation cost function hcy tells us that the
computation workload of CN is proportional to the sum of
squares of the incoming degrees of the vertices in a fragment.
As shown in Fig. 1(c), this is the key to balance the workload
of CN, rather than the number of edges and vertices. a

3.2 A Graph Partitioning Strategy

We now present an application-driven partitioning strategy.
Given an algorithm A of our interest, it works as follows:
(1) it first learns the cost functions h# and g4 of A; then
(2) when A is applied to any graph G, given a natural num-
ber n, it computes a partition HP(n) of G such that it
minimizes the parallel cost max;e[1,,)Ca(F;) of A.
As opposed to prior partitioning strategies, this strategy
targets a given algorithm A and guides partitions by the cost
model of A, not by the traditional one-size-fits-all metrics.
The strategy is carried out by the following:
o Polynomial regression models: given an algorithm A,
learn the cost functions h# and g# of A (Section 4).
o Hybrid partitioners: given a graph G and a number n,
compute a partition HP(rn) of G to minimize the parallel
cost of A estimated by h4 and g# (Section 5).

Complexity. The decision problem for application-driven
partitioning, denoted by ADP, can be stated as follows.

o Input: A graph G, a number n > 0, a cost budget B, and
two cost functions h# and g4 of A.

o Question: Is there a HP(n) of G s.t. the parallel cost of A
under HP(n) is bounded by B, i.e., max;ep1,,jCa(F;) < B.

It is not surprising that problem ADP is intractable.
Theorem 1: ADP is NP-complete. O



Proof: Clearly ADP is in NP. Its NP-hardness can be verified
by reduction from the set partition problem [18]. O

Remark. To simplify the discussion, our partitioning strategy
targets important applications that run repeatedly, e.g., graph
pattern matching with various patterns. It can be extended to
cope with multiple applications running on the same graph:
(a) assign weights to multiple tasks based on their impor-
tance, frequency and cost; (b) extend Eq (1) to an overall cost
model for these tasks, by incorporating weight coefficients;
and (c) find a hybrid partition to reduce the overall cost.

4 LEARNING COST FUNCTIONS

We next show how to learn h# and g4 for a given algorithm
A. We first give a multivariate polynomial regression model
for h 4 and g with metric variables X. We then show how
we collect training data and train the model. Since the ob-
jective function and learning algorithm for g# are similar
to their h 4 counterparts, below we focus on learning h 4.
Learning g.# differs from h 4 in only training data.

Cost function as polynomial regression. Given metric
variables X(v) = {x1(v),...,xx(v)} of vertex v (Sec-
tion 3.1), we model h 4 as a polynomial function h#(X(v)) =
2y, er @;Yj(v), where I' is the set of all terms in the expansion
of (14 Xy, (v)ex(w) Xi(v))?, wj is the weight of y;(v) and p € N
controls the highest order of the polynomial expression.
The learning algorithm employs training samples, each de-
noted as [X(vg), tx ], which is extracted from the running log
of A and includes computational cost #; of each node vy, to
adjust each weight parameter w; so that every h#(X(vk)) ap-
proximates t. Using mean squared relative error (MSRE) [35]
as loss function, the learning objective for h# is written as

1 X (Uk)

(ha(=22 =2 1+ 3 o,
[X (k). tk]€ Dy ;i €Q
where Dy, is the set of all training samples for hz, | Dy, |
is the number of training samples, Q = {w, ..., o)}, and

2w eq |wil is the penalty function to prevent over-fitting 8].

min

Q| Dyl

The reason for implementing h# as a polynomial func-
tion is twofold. (1) In theory polynomials can closely ap-
proximate a continuous function defined on a closed inter-
val [47]. Polynomial regression has proven effective in pre-
dicting computational cost in practice [21]. (2) The polyno-
mial model is explainable compared with other black-box ML
models [4, 21, 41], e.g., it gives the cost calculation expression
and shows which variable in X contributes most to the cost.

Model training. Given an algorithm A, we first run A on
real-life and synthetic graphs to collect Dy, and then train
the regression model with Dy, by the stochastic gradient
descent (SGD) algorithm [8]. When collecting Dy, ,, we only
pick nodes that are used in computation. For example, we
only record the metric variables X and the computation time

of nodes ty, ty, 13, t4 and t5 in Fig. 1(b) to collect training data
for hcn;, since only nodes with incoming edges are involved
in the computation. To get D, for g4, (1) we only collect the
communication costs of master nodes on fragment borders;
and (2) we exclude its overlapping portion with computation
for more accurate learning (see Section 3.1).

We find that cost C# heavily depends on algorithm A. To
make h# and g4 generic, we put no restrictions on either
graphs used in the training or how the graphs are partitioned.

Training cost reduction. To reduce the training cost while
preserving high prediction accuracy, we shorten X by select-
ing influential variables for the prediction. This variable se-
lection can be automatic via feature selection algorithms [12].
We employ “L1-based feature selection” algorithm [37] in
our approach. In addition, domain knowledge can also be
incorporated into feature selection. Note that domain knowl-
edge is not mandatory but it helps improve model prediction
and makes training easier. For example, since d; (v) and
d5(v) of anode v are adequate to estimate the computational
cost of CN, other metric variables in X are not included
in hcn. Moreover, we can even specify that hen(v)

w1df (v)df(v) + wadf(v) + ws. This yields merely three
weight parameters w to learn, and reduces the learning cost.

Example 7: We have seen hcy and grc in Example 5. We
next illustrate how these cost functions are learned for CN
and TC, respectively; the learning of Arc and gcy is similar.

(1) CN. First, we run CN on 10 graphs randomly partitioned
by either edge-cut or vertex-cut, and record [X(v;), t;] of
each vertex v; as training samples. While these samples may
not cover extreme scenarios, such as super nodes with high
degrees, the training data suffices for our tasks as the impact
of the extreme cases is diluted by cost aggregation in the
fragment. With 80% (resp. 20%) of a total 100,000 samples for
training (resp. testing) and the highest order p set as 2, we
learned hcn = 9.23 X 107°d; (v)d5(v) + 1.04 X 107°d] (v) +
1.02x107%, where the testing MSRE is 0.023. The learned hcy
shows that the computational cost of a vertex is dominated by
the “square” of its in-degree, consistent with its complexity.

(2) TC. We learned grc=8.42x 10~>dg(v)r(v)I(v) with 80,000
samples. As samples for grc, we only pick master nodes since
other vertices incur little communication. The learned gr¢
shows that the communication cost is determined by the
degrees of vertices and the number of mirrors. a

5 HYBRID PARTITIONERS

We have seen how to learn cost functions h # and g4 for a
graph algorithm A (Section 4). The second component of
our application-driven partitioning strategy (Section 3.2) is
a partitioner that, given a graph G, finds a partition of G to
reduce the parallel cost of A, guided by h# and g 4.



We next develop such partitioners. Instead of developing
yet another partitioner, we show that edge-cut and vertex-
cut partitions can be revised to consent to the cost functions.
We present two such algorithms, E2H and V2H. Given an
edge-cut (resp. vertex-cut) partition of G produced by any
widely-used partitioner, E2H (resp. V2H) improves it and
produces a hybrid partition HP(n) to fit the cost pattern of A.

Below we first present the sequential version of algorithms
E2H and V2H in Sections 5.1 and 5.2, respectively. We then
show how to parallelize E2H and V2H in Section 5.3.

5.1 From Edge Cut to Hybrid Cut

Edge-cut promotes locality, i.e., each node in an edge-cut
tends to keep all its incident edges locally. However, this
may lead to imbalanced workload. The reasons are twofold.
First, real-life graphs often follow power-law, i.e., a small
number of vertices are adjacent to a large fraction of edges.
It is hard to balance workload while retaining the locality.
Second, as shown in Example 1, computational cost patterns
vary for algorithms. A partition with balanced workload for
one algorithm may still exhibit skew workload for another.

Overview of E2H. Given an edge-cut HPg(n) and two cost
functions hz and g# of A, E2H extends HPg(n) to a hybrid
partition HP(n) to reduce the parallel cost max;e[1,,jCa(F;)
of A in two stages. Recall that C#(F;) = C;(F,—) + C;(Fi).
Guided by hg, the first stage of E2H balances computa-
tional workload to reduce max;ef;,,)C ;l (F;) of A (and hence
max;e[1,n]Ca(F;)). Guided by g4, its second stage reduces
maX;e[1, n]C;(Fi) by redistributing communication cost.

Balance computational cost. This stage consists of two
phases, namely, EMigrate and ESplit. To balance computa-
tional cost, both phases migrate nodes and edges from over-
loaded fragment to underloaded fragments. To this end, we
estimate a budget B, e.g., average computational cost of frag-
ments. A fragment F; is overloaded if its computational cost
exceeds B, ie., C’}I(Fi)>B; and F; is underloaded if C;(F,-)SB.

EMigrate. This phase reduces maxie[l,n]CI;z( (F;) by migrating
e-cut nodes and their incident edges from overloaded frag-
ments to underloaded ones. To retain the locality of edge-cut
partitions, for each overloaded fragment, E2H identifies a
coherent sub-fragment within budget B and marks the rest
of e-cut nodes and their incident edges for migration. De-
note by (v, E’) a migration candidate, where v is marked
for migration and E’ is the set of edges incident to v. In
each iteration, E2H invokes an EMigrate operation to move
a migration candidate (v, E’) to an underloaded fragment
F; if C?z{ (Fj U {(v,E")} < B. This phase terminates when no
more EMigrate operations can be performed. The remaining
migration candidates will be processed in the next phase.
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Figure 2: EMigrate and ESplit

Example 8: Consider the edge-cut partition of Fig. 1(b). We
move an e-cut node #; from fragment F; to F; via EMigrate.
This yields another edge-cut shown in Fig. 2(a). Note that
the migration also leaves a dummy copy (a white node) in
F; since t3 is linked to another e-cut node s; of Fj. O

ESplit. This phase cuts e-cut nodes into v-cut nodes and mi-

grates them to underloaded fragments to further balance
workload. For heavily skewed graphs, Emigrate may not suf-
fice since the computational cost incurred by an e-cut node v
(e.g., nodes that are incident to a large number of edges) may
already exceed the budget. In that case, ESplit cuts v into
multiple v-cut nodes and splits the computation among frag-
ments. Unlike EMigrate, ESplit splits v and only migrates a
subset of v’s incident edges. The ESplit phase only processes
the migration candidates left from the EMigrate phase. It ter-
minates when all migration candidates have been processed.

Example 9: Applying ESplit to e-cut node £, in the partition
of Fig. 2(a), a possible outcome is depicted in Fig. 2(b). Now
node t; of F; is cut and two edges (ss3,t2) and (s4, t;) are
migrated from fragment F; to F,. The resulting partition
is hybrid. It is not an edge-cut since t; does not keeps all
incident edges locally; it is not a vertex-cut since there exists
edge duplication, e.g., (s1,t3) is in both F; and F,. O

Redistribute communication cost. Communication cost
is often incurred by master nodes (see Equation (3)). Recall
that C4(F;) = Cf;{(Fi) + C;(Fi). To further reduce the par-
allel cost max;e[1,,1Ca(F;) of A, E2H utilizes an MAssign
phase to update master node assignments and redistribute
communication cost. Note that MAssign does not increase
the computational costs of partitions obtained by EMigrate
and ESplit, since it only adjusts the master node mapping.

MAssign. Initially, MAssign marks all border nodes in 7.0 as

unassigned and set CZ;[(FI‘) =0 for i € [1, n]. It processes the
master node assignment in an one-pass fashion. Consider
v € .0 and let F;, ..., F;, be the fragments in which
v resides. Denote by g;((v), g;’;[(v) the communication
cost incurred by v if the master of v is assigned to one of
F;, ...Fy, respectively. To minimize max;e[1,n)Ca(F;), the
master of v is assigned to the fragment with minimal cost.
More specifically, the master of v is assigned to F;, where

5y C(F)) + C(Fp) + gla(v). (4)
Once the master of v is assigned to fragment F;-, MAssign
includes the communication cost g‘;( (v) of v in ng (Fp).

o .
i =argmin;

.....




Input:  Edge-cut HPg(n) = (Fy, ..

Output: Revised hybrid partition HP(n) = (Fy, . .., Fp).

1. Be Xt Ch(F)m 00, U0

2. foreachie€[1,n]do

3. if C" (F;) > B then

4. O «— OU{F;}; S; « GetCandidates(F;, B);

5. elseU «— UU{F;}; S;i<0;

6. foreach F; € O and each (v,E}) € S; do /" phase EMigrate */
7. for each Fj € U do

8. if C" (Fj U {(v. EY)} < B then

9. migrates (v, E¥) to Fj;  Si < Si \ {(v, E?)};

10. break;

11. for each F; € O and each (v,EY) € S; do  /* phase ESplit */
12.  foreache € EY do

13. t— argminje[l’n]Cg(Fj); migrates (v, {e}) to Fy;

14. Si «— Si \ {(v, E?)}

15. adjust master node mapping; /* phase MAssign */
16. return HP(n) = (Fy, ..., Fy);

Figure 3: Algorithm E2H

Algorithm E2H. Putting these together, we present algo-
rithm E2H in Fig. 3. Given an edge-cut partition HPg(n)
and cost functions h # and g4 of algorithm A, E2H extends
HPg(n) to a hybrid partition HP(n) by reducing the parallel
cost of A. Using function h#, E2H first sets a computational
cost budget B for each fragment (line 1). Based on B, it divides
the fragments into two sets: overload fragments O and under-
loaded ones U (lines 2-5). For each overloaded F; € O, E2H
identifies a set of e-cut nodes S; as candidates for migration
by procedure GetCandidates (line 4; see below).

To balance workload, E2H first carries out the EMigrate
phase (lines 6-10). Each time, it selects an e-cut node and
its incident edges from migration candidates and reallocates
them to an underloaded fragment F,, such that the move does
not make the cost of F,, exceed budget estimated in terms of
ha. When no more Emigrate operation can be applied, E2H
conducts the ESplit phase (lines 11-14). Each time, it selects
an edge associated to the rest of candidate e-cut nodes and
migrates it to the fragment with minimal computational cost.

At last, E2H revises the master node mapping to further
reduce parallel cost of A on HP(n) via MAssign (line 15).

Remark. Phase Esplit is applicable only if the application A
is partition transparent (see Section 6). If otherwise, i.e., if
A only works under edge-cut, then we can drop Esplit, and
E2H yields edge-cut partitions instead. As shown in Exp-1
(see Section 8), such partitions still substantially improve the
original partitions although not as effective as hybrid-cut.

Procedure GetCandidates. Given a fragment F; and a budget
B, GetCandidates identifies a set of vertices and edges as
migration candidates. As an effort to retain the locality of F;,
GetCandidates identifies a coherent sub-fragment F; of F;
within the budget B. To do that, GetCandidates first performs

., Fy), cost functions h# and g #.

a BFS traversal on F;. Following the BFS order, it includes
nodes and their edges to F; within budget B in a greedy
manner. More specifically, a vertex v and its incident edges
E’ are added to F/ if Cé’l{ (F/U{(v,E")}) < B. The vertices and
edges excluded from F] are returned as migration candidates.

Example 10: We show how E2H works on the edge-cut of
Fig. 1(b) based on hcn and gen=5.57 % IO_SDdE; (Example 7).

(1) E2H estimates C!(F;) = 2.69 x 107> ms and C! (F;) =
7.45 X 107* ms for F; and F,. With the cost budget B =
1.72 X 1073ms, F; is overloaded while F, is underloaded.

(2) To balance the workload, E2H uses GetCandidates to iden-
tify migration candidates in fragment F;. Let t1, 51, S2, £3, t2
be a BFS order. Observe that the sub-fragment induced by
{t1, 51,52} is a maximal one within the budget. Then e-cut
nodes t3 and ¢, are marked as migration candidates.

(3) Suppose that E2H first migrates t3 by EMigrate from F; to
F,. This yields the partition shown in Fig. 2(a). This increases
the cost CgN(Fz) of F, from 7.45 X 10™*ms to 1.12 X 10™3ms.
E2H then tries to migrate t, from F; to F,. However, this
operation is aborted as it would exceed F;’s budget.

(4) E2H then applies ESplit to cut t; and migrates edges
incident to u; in a greedy manner. It migrates two edges
(s3, t2) and (s4, t2) from F; to F, as demonstrated in Example 9.
It ends up with the hybrid partition shown in Fig. 2(b).

(5) To further reduce the execution cost of CN, E2H updates
the master node mapping. By gcn, only vertices with df, > 0
incur communication. Thus we only consider master map-
ping for s;, s3 and s4. By MAssign, the masters of s; and s,
are assigned to F;, while the master of s is assigned to F;.

(6) The original edge-cut has parallel cost max;e[1,2jCen(F;)
= 2.98 x 10~%ms if the masters of s3 and s, are mapped to
F,. In contrast, the hybrid-cut obtained via E2H has parallel
cost max;ep; 2]Con(F;) = max{1.98,2.11} X 10> ms = 2.11 X
10~%ms. Thus E2H indeed reduces the parallel cost of CN. O

5.2 From Vertex Cut to Hybrid Cut

Compared with edge-cut, vertex-cut has better balance. How-
ever, most vertex-cut partitioners aim to balance edge size.
As we have seen in Example 1, this does not suffice for work-
load balance. Also observe that vertex-cut often incurs larger
communication cost due to bad locality [19].

Overview of V2H. Given a vertex-cut HPy (n) and cost func-
tions hg and g4 of algorithm A, V2H produces a hybrid
partition HP(n) by adjusting HPy (n), to reduce the parallel
cost max;e[1,n)Ca(F;) of A. It also has two stages. Guided
by h 4, it first not only balances computational workload but
also reduces communication cost. Guided by g4, its second
stage redistributes communication cost. Below we focus on
the first stage; the second stage is similar to MAssign in E2H.



Balance computational cost. This stage consists of two
phases, namely, VMigrate and VMerge. As in E2H, it first esti-
mates a cost budget B, and classifies fragments as overloaded
and underloaded. Then VMigrate migrates v-cut nodes from
overloaded fragments to underloaded ones to balance work-
load. VMerge makes v-cut nodes to e-cut nodes to further
balance workload and reduce communication cost.

VM igrate. This phase migrates v-cut nodes and their incident
edges from overloaded fragments to underloaded ones. To
both improve locality and reduce communication cost, VMi-
grate adopts a different approach to identifying migration
candidates. A v-cut node v and its associated edges E’ are
migrated from an overloaded F; to an underloaded F; if

o there exists another v-cut node (v, E”') in Fj; and
o Ch(F;u{(v,E")})} <B.
This reduces the replication of v by one. Thus VMigrate

reduces both maxie[l,n]Cgl (F;) and communication cost. The
process stops when no VMigrate operation can be applied.

VMerge. This phase iteratively merges v-cut nodes into e-cut

nodes. In each iteration, VMerge (a) first selects a fragment
F; with the smallest C;l(F,-) and a v-cut node v in F;; and (b)
changes v to an e-cut node by either moving or replicating
all ’s missing edges in F; based on the respective costs. This
change is valid if the new C g{ (F;) does not exceed the budget.
To reduce the computational cost incurred by v, it marks the
copies of v in fragments other than F; as dummy nodes. That
is, by converting a v-cut node to an e-cut one, it balances
workload by reallocating computation to the fragment with
minimal cost Cé‘q (F;). VMerge continuously merges v-cut
nodes until no valid changes can be made.

Example 11: Applying VMerge to v-cut node v, in F; of
Fig. 1(e), it replicates edge (v, v3) at F;. Now v, becomes an
e-cut node, and v; in F; is marked as a dummy copy. This
yields a hybrid partition depicted in Fig. 1(f). As remarked
in Example 1, this reduces the communication of TC. O

5.3 Parallelization
We next show how to parallelize E2H and V2H.

Setting. We adopt a shared-nothing distributed setting. Ini-
tially, fragments Fj, ..., F,, of the input edge-cut (resp. vertex-
cut) partition are distributed to n workers Py, ..., P, respec-
tively. The workers run under BSP model [45], which sep-
arates the computation into supersteps. Based on h 4 and
g, each worker maintains a shared state, including costs
C4(F;)and C;(Fi) of each F; and other cost-related metrics
for the vertices and edges processed. In each superstep, each
worker conducts a small batch of computation to refine the
partition and synchronize the shared state via messages.
Below we only show how to parallelize phase EMigrate
and MAssgin. The parallelization of other phases is similar.

Parallel EMigrate. In a superstep, each overloaded worker
sends a small batch of migration candidates to underloaded
workers in a round-robin manner. A worker is overloaded
(resp. underloaded) if it hosts an overloaded (resp. under-
loaded) fragment. Denote by k the number of underloaded
fragments and let P; , ..., P;, be the associated underloaded
workers. An overloaded worker selects k migration candi-
dates and sends them to P;, ..., P;, in parallel, respectively.
Upon receiving migration candidates, underloaded worker
P;; (j € [1, k]) processes them one by one. Worker P;; accepts
a candidate if it does not exceed the budget; otherwise P; ;
rejects it. The original sender includes the rejected candidate
in the next batch and sends it to worker P;,, where £ = (j+1)
mod k. The process proceeds until each migration candidate
is either accepted by some P;; or rejected by all P;,, ... P;,..
Parallel MAssign. In a superstep, each worker selects a small
batch of unassigned vertices in F;.O, and adjusts master
nodes by Eq. (4) above in parallel, based on the shared Cg (Fy)
and C;(Fi) of each F;. The adjustments are synchronized
among workers to resolve conflicts and update the shared
state. The process stops after all nodes in 7.0 are processed.

6 PARTITION TRANSPARENCY

We next study partition transparency. We consider w.l.o.g. al-
gorithms in the graph-centric model of GRAPE [17]. We first
review the model of GRAPE (Section 6.1), and then define
partition transparency and provide a condition under which
graph algorithms are partition transparent (Section 6.1).

6.1 Graph Centric Programming
Consider a class Q of queries. Given a query Q € Q and
a partition HP(n) of a graph G, a parallel program for Q
computes the set Q(G) of answers to Q in G.

PIE algorithms. To develop a parallel algorithm for Q with
GRAPE, one only needs to specify three functions.

(1) PEval: a sequential algorithm that given a query Q € Q
and a graph G, computes the answer Q(G) to Q in G.

(2) IncEval: a sequential incremental algorithm that given Q,
G, Q(G) and updates AG to G, computes updates AO to
the old output Q(G) such that Q(G ® AG) = Q(G) @ AO,
where G ® AG denotes G updated by AG [40].

(3) Assemble: a function that collects partial answers com-
puted locally at each worker by PEval and IncEval, and
assembles the partial results into complete answer Q(G).

The three functions are referred to as a PIE program for
Q (PEval, IncEval and Assemble). PEval and IncEval can be
any existing sequential (incremental) algorithms for Q.

The only additions are the following declarations in PEval.

(a) Update parameters. PEval declares (a) a set C; of vertices
in fragment F; as the update region of F;, e.g., vertices in F;.O,




and (b) status variables x for C;. We denote by C;.x the set of
update parameters of F;, i.e., the status variables associated
with the vertices in C;. As will be seen shortly, C;.x marks
candidates to be updated by incremental steps IncEval.

(b) Aggregate functions. PEval also specifies an aggregate
function fagg, €.g., min and max, for conflict resolution, i.e.,
to resolve conflicts when multiple workers attempt to assign
different values to the same update parameter.

Parallel computation. Given a graph G, GRAPE partitions
G into HP(n) = (Fy, ..., F,) and distributes the fragments
across n workers (Py, .. ., P,), respectively. Upon receiving
a query Q at master P, (a designated worker), GRAPE posts
Q to all workers and computes Q(G) under BSP as follows.

(1) Partial evaluation (PEval). In the first superstep, GRAPE

computes partial results R? = PEval(Q, F;) over fragment F;
at each worker P;, in parallel (i € [1, n]). Here R} denotes
partial results in superstep r at worker P;. At the end, P; sends
the set C;.x of update parameters to master Py as a message.

For each status variable x € C;.x, master P, collects the
multi-set S, of values from messages of all workers, and com-
putes Xager = fager(Sx) by applying the aggregate function
faggr declared in PEval. It generates message M; to worker P;,
which includes only those fager(Sx)’s such that figer(Sx) # x,
i.e., only the changed values of the update parameters of F;.

(2) Incremental computation (IncEval). In superstep r + 1,
upon receiving message M;, worker P; invokes IncEval to
incrementally compute R;“ = IncEval(Q, R}, F;, M;) by treat-
ing message M; as updates, in parallel for i € [1, n]. At the end
of the process, P; sends a message to Py that consists of up-
dated values of C;.x, if any. After receiving messages from all
workers, master Py deduces a message M; just like in PEval.
It sends message M; to worker P; in the next superstep.

(3) Termination (Assemble). The computation terminates
when it reaches a fixpoint, i.e., R;“ =Rl foralli € [1,n].
At this time, GRAPE invokes Assemble at Py, which pulls
partial results from all workers, takes a union of the partial
results, and gets the final result at Py, denoted by A(Q, G).

6.2 Condition for Partition Transparency
PIE programs have been developed for vertex-cut and

edge-cut. As shown in Example 2, PIE programs developed
for edge-cut may not work under vertex-cut and vice versa.

Partition transparency. We say that a PIE program A is
partition transparent if A works under edge-cut, vertex-cut
and hybrid partitions without requiring any change to A.
That is, we can uniformly use the same algorithm without
worrying about the choice of graph partitioning strategies.

Conditions. We next present conditions for a PIE program

to be partition transparent. We use the following notations.
(a) Assume the existence of a partial order < on partial results
Rg. (b) Denote by Gy E G, if graph G; is a subgraph of G.
We say that PEval (resp. IncEval) is monotonic if for all
queries Q€Q and graphs Gy, G,, G1EG,; (resp. R; <R!) implies
that PEval(Q, G;)<PEval(Q, G,) (resp. R{*'<R!*!). Here R}
and R! are partial results in (possibly different) runs of A.

Transparency condition. We give two conditions for A.

P1 PEval and IncEval are monotonic.

P2 A is correct under vertex cut, i.e., for any graph G, query Q
and under any vertex-cut partition of G, A(Q, G)=0Q(G).

Theorem 2: A PIE algorithm A is partition transparent if A
satisfies conditions P1 and P2. O

Proof: We show that for any graph G, query Q € Q and
hybrid partition HP(n) = (Fy, ..., F,) of G, A(Q, G) = Q(G).
Denote by A(Q, HP(n)) the result of running A on HP(n).
(1) First consider a hybrid partition HP®(n) = (G,...,G)
that duplicates G. One can verify that A(Q, HP®(n)) = O(G)
under the computation model of GRAPE (Section 6.1). More-
over, since Fy, ..., F, are subgraphs of G, A(Q, HP(n)) <
A(Q, HPC(n)) by P1. Thus A(Q, HP(n)) < Q(G).

(2) Now consider vertex-cut partition HP"(n) = (F;, ..., F;)
by removing duplicated edges from HP(n). Since F is a sub-
graph of F; (i € [1,n]), A(Q,HP"(n)) < A(Q, HP(n)) by P1.
Because A is correct under vertex cut (P2), we have that
A(Q, HP"(n)) = Q(G). Hence Q(G) < A(Q, HP(n)). a

Vertex-centric model. We next present a condition for
vertex-centric algorithms to be partition transparent.

As shown in [16, 17], a vertex-centric algorithm is a spe-
cific PIE program. To see this, consider the GAS model [19].
Such a vertex-centric algorithm $B can be modeled as a PIE
program when each fragment consists of a single vertex; it is
not necessarily partition transparent, e.g., the PR algorithm.

Corollary 3: A vertex-centric algorithm B of the GAS model
is partition transparent if B satisfies conditions P1 and P2. O

7 TRANSPARENT ALGORITHMS

As case studies, we next provide PIE algorithms for com-
mon neighbor, triangle counting and PageRank. We show
that these programs are partition transparent, i.e., the same
algorithms work under vertex-cut, edge-cut and hybrid-cut.

7.1 Common Neighbor
We start with common neighbor (CN; see Example 1). Denote
by T'*(v) (resp. I~ (v)) the set of outgoing (resp. incoming)
neighbors of vertex v. The problem is stated as follows.
o Input: A directed graph G = (V, E).
o Output: The count CN(u, v) = |T*(u) N T*(v)| of outgo-
ing common neighbors for all pairs (u,v) € V X V.



(1) Algorithm. We outline a PIE program for CN. For each
vertex v, PEval declares a status variable v.x to maintain its
incoming neighbors I'" (v), and defines the set F;.O of border
nodes as the update region C; of fragment F;.

At each F;, PEval does the following: (a) for each master
vertex v, it increases CN(u, w) for its incoming neighbors u
and w in F;, and (b) for each non-master vertex u in F;.O, u.x
collects its local incoming neighbors. At the end of PEval, ag-
gregate function f,g takes the union of u.x for border nodes
across different fragments. This collects remote changes
u.Ax to the neighbor set of border master node u of F;.

Upon receiving such u.Ax via messages, IncEval incremen-
tally identifies pairs that share u as their common outgoing
neighbor, and increases their count accordingly.

The process iterates until no changes can be incurred. At
this point Assemble collects counts on master vertices and
computes the sum of CN(u, v) for each pair (u,v) € VX V.

(2) Transparency. The PIE program is partition-transparent
by Theorem 2. It is easy to verify that the program satis-
fies condition P2. For P1, PEval and IncEval are monotonic
because when G; E G,, CN(y, v) in G is larger than in G;
since each vertex in G; has no less incoming neighbors.

7.2 Triangle Counting
We next study the problem of triangle counting (TC):
o Input: An undirected graph G = (V, E).
o Output: The number of all triples (u,v,w) € VXV XV
such that (u,v) € E, (u,w) € E and (v, w) € E.

(1) Algorithm. Our PIE program declares a status variable v.x
for each vertex v to store its neighbors. For each fragment
F;, its update region C; is the set F;.O of border nodes.

For each vertex v in fragment F;, PEval adds v to u.x for
each neighbor u of v if the degree of u is larger than that of
v (i.e, dg(v) < dg(u)). This is to avoid counting the same
triangles repeatedly (e.g., (u, v, w) and (v, w, u) are the same
triangle). At the end of PEval, f,s, takes the union of v.x for
border nodes v of F;, and collects in v.x all remote neighbors.

Upon receiving messages, IncEval updates the status vari-
ables of those border nodes that are not e-cut, and counts
the triangles. More specifically, for each master vertex v in
fragment F;, IncEval scans v.x and u.x for those neighbors
u of v such that dg(v)>dg(u), and increases the count of
triangles when there exists a common vertex in u.x and v.x.

The computation terminates when no more changes can
be made to any C;.x by IncEval. At this point, Assemble
computes the sum of triangle counts across all fragments.

(2) Transparency. By Theorem 2, the PIE program is parti-
tion transparent. It satisfies condition P2. For P1, PEval and
IncEval are monotonic since for GiEG,, v.x in G, is no less
than v.x in Gy, as more triangles are in G; than in Gy.

7.3 PageRank

Next we consider PageRank (PR) for ranking Web pages and
links. It takes as input a directed graph G = (V, E) and com-
putes a ranking score p(v) for each v € V, defined as follows:

(
PRI =p Y B r-p), 5)
(u,v)€E G
where p is a damping factor between 0 and 1. PR is:
o Input: A directed graph G = (V, E).

o Output: Ranking score p(v) for each vertex v € V.

(1) Algorithm. Our PIE program A for PR declares a status
variable v.x for each vertex v, which is its PR score p(v),
initialized as 1. For each fragment F;, its update region C;
is F;.0. The aggregate function fo4, is defined as sum. For
each edge e associated with vertices in F;.O, we maintain its
global replication count, denoted as ||e||, which is the total
number of copies of e in all fragments.

At each fragment F;, PEval does the following: (a) For
each master node v that has gathered all its incoming edges,
it updates p(v) by applying Equation (5), and (b) for other
vertices u in F;, it computes a partial ranking score:

_ )
pv) = p(uvZ)EE e TS TRACRIE (6)
To reduce the communication cost, if not all incoming edges
of a vertex v are in place, we compute the partial ranking
scores of v before sending messages. At the end of PEval,
fager aggregates partial scores of each border node using sum.

Upon receiving messages, IncEval first updates the score
p(u) of each border node u. It then iteratively updates ranking
scores starting from the border nodes, and propagates the
updates through outgoing edges like PEval.

The process proceeds until the sum of changes to scores
p(-) is below a user-defined threshold €. At this moment
Assemble simply returns p(v) for all vertices v.

(2) Transparency. We verify the partition transparency of
the program as follows. Given any hybrid partition HP(G),
we construct an edge-cut partition HP’(G) by making all
master nodes carrying all its adjacent edges locally, and re-
moving vertices and edges not linked to any master nodes.
One can verify that (a) A(Q, HP(G))=A(Q, HP’(G)) and (b)
A(Q, HP’(G)) correctly computes PR scores [50]. That is, the
program correctly computes PR scores under hybrid HP(G).

(3) Cost Model. We have learned the following for PR:

hpg = 4.88 X 107°d} (v) + 4 X 1074,

gpr = 6.60 X 107%r(v) + 1.1 X 1074,
where hpg (in ms) is determined by d; for collecting p(-) via
incoming edges, and gpr is dominated by r(v) for synchro-
nizing changes across various fragments.

Remark. Partition transparent algorithms also include the
PIE programs of [17] for, e.g., WCC (weakly connected com-



ponent) and SSSP (single source shortest path). Moreover,
many algorithms can be rewritten and made transparent,
e.g., MST (minimal spanning tree), Graph Simulation, Per-
sonalized PageRank and Subgraph Isomorphism.

8 EXPERIMENTAL STUDY

Using real-life and synthetic graphs, we conducted four sets
of experiments to evaluate our application-driven partition-
ers for (1) effectiveness, (2) efficiency, (3) parallel scalability,
and (4) accuracy and efficiency of cost function learning.

Experimental setting. We start with the setting.

Datasets. We used three real-life graphs: (a) liveJournal [1],
a social network with 4.8 million entities and 68 million
relationships; (b) Twitter [2], a social network with 42 million
users and 1.5 billion links; and (c) UKWeb [3], a large Web
graph with 106 million nodes and 3.7 billion edges.

We also generated synthetic graphs with size up to 500
million vertices and 6 billion edges, to test scalability.

Partitioners. We implemented the parallel version ParE2H
and ParV2H of E2H and V2H (Section 5) in C++ and com-
pared them with the following: (1) xtraPuLP [43], a state-
of-the-art edge-cut partitioner; (2) Fennel [44], a streaming
partitioner for edge-cut; (3) Grid [23], a hash partitioner
for vertex-cut with provable bound on vertex replication;
(4) NE [49], a state-of-the-art vertex-cut heuristic; and (5)
Ginger [13], a hybrid partitioner that revises Fennel; we eval-
uated Ginger to compare improvements over Fennel.

To get a fair comparison when evaluating the effective-
ness and efficiency, we equipped each edge-cut (resp. vertex-
cut) partitioner above with ParE2H (resp. ParV2H) as a
post-partitioning adjustment process. Denote by HxtraPuLP,
HFennel, HGrid and HNE the hybrid partitioners derived in
such ways, e.g., HxtraPuLP first applies xtraPuLP to get an
initial edge-cut HPg(n), and then invokes ParE2H to extend
HPg(n) to a hybrid partition. We do not extend Ginger since
Ginger already produces hybrid partitions.

ML learning setting. For training, we ran each algorithm on

10 graphs as described in Section 4. The number of train-
ing (resp. testing) samples for CN, TC and PR is 80,000
(resp. 20,000), which are sampled from the algorithms’ run-
ning log. Regression models are constructed by Pytorch [36]
and trained on a server with one NVIDIA Tesla V100 GPU.
The experiments were conducted on GRAPE [17] (see Sec-
tion 6.1) deployed on 32 machines in an HPC cluster, each
with 12 cores powered by Xeon 2.2GHz, 128GB RAM, and
10Gbps NIC. In the experiments, each fragment was pro-
cessed by one worker running on an exclusive core. All exper-
iments were repeated 5 times. The average is reported here.

Experimental results. We next report our findings.

Exp-1: Effectiveness. We first tested how our application-
driven partitions speed up execution of graph algorithms.
Application speedup. Varying the partition number n from 32
to 160, we tested the performance of the transparent algo-
rithms CN, TC and PR (Section 7) under edge-cut, vertex-cut
and their hybrid refinements. Note that we use different
y-axes to present the costs of different algorithms.

We also tested performance gap between transparent al-
gorithms A and their normal (non-transparent) version 5.
We find the following. (a) When A and B run on edge-cut
and vertex-cut partitions, the gap is rather small (within 5%).
For instance, transparent PR is 3.9% (resp. 4.7%) slower than
its normal version on vertex-cut (resp. edge-cut) partitions.
(b) When A runs on hybrid partitions, on average it out-
performs B by 4.7 times, up to 22.1 times, when 8 runs on
edge-cut and vertex-cut partitions (note that 8 may not work
on hybrid partitions). For PR, the gap is 2.7 times. In light
of these, we only report the performance of the transparent
algorithms in the sequel to demonstrate the impact of parti-
tions, excluding the impact of algorithm implementations.

(1) CN. Figures 4(a) to 4(c) report the performance of CN on
all three real-life datasets. Due to memory limit, we filtered
common neighbors with incoming degree above a threshold
0, i.e., a common neighbor w is excluded from the result if
di(w) > 6. This is a common practice in applications of
CN, since common neighbors with lower degrees usually
provide more useful information. We set 6 = 300 for Twitter,
0 = 1000 for UKWeb and 6 = oo for liveJournal. Note that 6
for Twitter is smaller than for UKWeb since Twitter is much
more skewed than UKWeb. The results tell us the following.

(a) By extending edge-cut of xtraPuLP and Fennel to hybrid
partition, ParE2H improves the performance of CN by 3.8
(resp. 18.2) times on average, up to 22.5 times. This is because
the edge-cut partitions do not fit the cost pattern of CN due to
workload imbalance, while ParE2H balances workload. For
example, as shown in Table 2, on Twitter with n = 96, the
balance factor Acn for CN of xtraPuLP (resp. Fennel) is 7.2
(resp. 13.7). With ParE2H, Acn of HxtraPuLP (resp. HFennel)
drops to 1.4 (resp. 1.3). CN of Fennel ran out-of-memory over
Twitter and UKWeb due to large Acn;, since CN stores large
intermediate results during the computation.

(b) ParV2H improves CN on vertex-cut of Grid (resp. NE)
by 3.5 (resp. 2.5) times on average, up to 7.4 (resp. 5.9) times
by balancing the computation workload of CN, as ParE2H.
Observe that the speedup ratio over Grid is greater than over
NE, because CN incurs communication cost and the locality
of Grid is not as good as that of NE, i.e., Grid has a larger f,,
than NE (see Table 2). By balancing workload and reducing
communication, ParV2H improves Grid better than NE.
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(c) Note that Ginger is also a hybrid partitioner based on
Fennel [13]. Compared with HFennel, it has smaller £, fe,
Ae, but larger Acy (see Table 2). As a result, HFennel beats
Ginger on CN by 2.7 times on average, up to 3.7 times.
These verify the benefit of application-driven partitioning,
and the need for revising balance factor and replication ratio.

(2) TC. Figures 4(d) to 4(f) report the performance of TC on
the three real-life datasets. We find the following.

(a) ParE2H improves TC by balancing workload as for CN.
On Twitter with n = 96, it improves TC on edge-cut of
xtraPuLP and Fennel by 15 and 21 times, respectively. More-
over, TC over HFennel is 3.2 times faster than over Ginger.

(b) ParV2H improves TC over vertex-cut of Grid and NE
by 2.3 and 1.7 times on average, up to 2.6 and 2.2 times,
respectively. Here the speedup of ParV2H is less than that of
ParE2H, since (i) by cutting vertices, Grid and NE get better
workload balance for TC than xtraPuLP and Fennel; and (ii)
TC ships more data over vertex-cut than over edge-cut.

(3) PR. As shown in Figures 4(g) and 4(h), on average, ParE2H
improves PR by 4.8 and 2.8 on Twitter and UKWeb, respec-
tively. By hpr (see Section 7), the edge size dominates the

computational cost of PR. ParE2H improves PR by balancing

the edge size based on hpg, while xtraPuLP and Fennel suf-

fer from edge imbalance. In contrast to ParE2H, ParV2H has

smaller improvement over PR. This is because vertex-cut of

Grid and NE has better edge balance (see A, in Table 2).
The results on liveJournal are consistent.

Impact of different phases. We further evaluated the phases
of ParE2H and ParV2H for their effectiveness. Denote by
ParE2Hy (resp. ParV2Hy) (1 < k < 3) the partitioner with
the first k phases of ParE2H (resp. ParV2H). We assessed the
performance gain of the k-th phase of ParE2H by comparing
ParE2Hy_; and ParE2Hy; similarly for ParV2H. Figures 4(i)
and 4(j) report the normalized speedup ratio over Twitter
with n = 96 for HxtraPuLP and HGrid, respectively. The
results over liveJournal and UKWeb and other hybrid parti-
tioners are consistent (not shown). We find the following.

(1) ParE2H. (a) Phase EMigrate accounts for 67.5%, 26.3%
and 74.4% of the total speedup of CN, TC and PR, respec-
tively. This shows the effectiveness of our approach on non-
transparent algorithms. (b) Phase ESplit alone improves CN
and TC by 1.1 and 2.7 times respectively. For PR, its impact
is smaller, since CN and TC are more sensitive to workload



Partitioner fo fe Ae Ao | Acn
xtraPuLP 11 1.7 11.1 0.1 7.2
HxtraPulLP | 10.6 | 1.6 8.6 0.5 1.4

Fennel 13 1.8 17.2 0.1 13.7
HFennel 143 | 1.7 5.2 0.7 13
Grid 9.8 1 0.9 0.6 3.2
HGrid 111 | 1.3 1.2 0.5 1.3
NE 2.7 1 0.0004 8.0 3.6
HNE 3.6 1.2 0.3 10.9 1.4

Ginger | 86 | 1 | 003 | 79 | 29
Table 2: Partition metrics of Twitter (n = 96)

imbalance. The impact of ESplit on CN over Twitter is less
substantial, since we filtered large-degree vertices for CN.
Without filtering, ESplit improves CN over liveJournal by 1.9
times. (c) Phase MAssign accounts for another 22.3%, 30.1%
and 21.9% of the speedup of CN, TC and PR, respectively.

(2) ParV2H. (a) Phase VMigrate contributes the most to the
speedup of CN, TC and PR, about 71.2%, 81.2% and 78.2% of
the total speedup, respectively. (b) By merging v-cut nodes
into e-cut nodes, phase VMerge contributes 16.5%, 5.8% and
7.1% of the total speedup for the algorithms, respectively. (c)
Phase MAssign contributes 13.2% on average.

Exp-2: Efficiency. Varying n from 32 to 160, we evaluated
the time taken by ParE2H (resp. ParV2H) in hybrid partition-
ers HxtraPuLP and HFennel (resp. HGrid and HNE).

(1) As shown in Fig. 4(k), for TC on Twitter (n = 160) ParE2H
takes 17.8s and 55.7s, i.e.,, 1.7% and 9.8% of the total time of
HxtraPuLP and HFennel, respectively. On average, ParE2H
takes 11.9% of the total partitioning time to extend edge-cut
to a hybrid partition that fits the cost pattern of algorithms.
The price is small compared to the speedup by ParE2H (by
7.3 times on average, up to 22.5 times; Exp-1). The results
are consistent for the other algorithms and graphs.

(2) The results of ParV2H are similar. On Twitter with n = 96,
ParV2H takes 5.9s (resp. 6.6s) to extend a vertex-cut of NE
(resp. Grid) to a hybrid partition. On all 3 datesets, ParV2H
takes 0.1% and 22.5% of the total partitioning time in HNE
and HGrid, respectively, while improving the performance
by 2.2 times on average, up to 7.4 times (see Exp-1).

Exp-3: Scalability. Fixing n = 96, we varied the size
of synthetic graphs |G| = (|V|, |E|) from (100M, 1.2B) to
(500M, 6B) to test the scalability of ParE2H and ParV2H. As
shown in Fig. 4(1) for CN, (1) both ParE2H and ParV2H scale
well. As G grows, ParE2H (resp. ParV2H) takes from 12.2s to
59.7s (resp. from 5.7s to 32.5s). Observe that in Fig 4(1), the
point of ParV2H in HNE is missing for 5|G|, since NE ran out-
of-memory. (2) The balance factor of an input partition has
impact on the runtime of ParE2H and ParV2H, e.g., HFennel
takes ParE2H the longest in all cases since Fennel has the
largest Acn, and more edges are moved to balance workload.
(3) The results are consistent for TC and PR.

Exp-4: Learning accuracy and efficiency. Table 3 reports

ha 9A
MSRE | training time(s) | MSRE | training time(s)
CN 0.023 46.2 0.028 48.6
TC 0.11 48.3 0.034 47.4
PR 0.017 43.6 0.011 46.9

Table 3: Accuracy and training time of cost models

the prediction accuracy and training time of each cost model.
We adopt MSRE as the accuracy metric. The smaller MSRE
of a model is, the more accurate the model is. As shown in
Table 3, the MSRE of regression model for CN and PR is
small, which shows that the metrics in X are adequate for
their cost estimation. However, the accuracy of hrc is rela-
tively poorer since only neighbors with smaller degrees are
checked (Section 7.2). This optimization deteriorates hrc as
node degrees are not informative enough for cost prediction.

Summary. We find the following. (1) ParE2H (resp. ParV2H)
speeds up CN, TC and PR by 11.0, 7.2 and 3.8 times (resp. 3.0,
1.9 and 1.7 times) on average, up to 22.5, 21.2 and 6.9 times
when varying n from 32 to 160. These verify the effectiveness
of application-driven partitioners. (2) ParE2H and ParV2H
are efficient. In the same setting as (1), on average ParE2H
(resp. ParV2H) takes 11.9% (resp. 11.3%) of the total parti-
tioning time. (3) The partitioners scale well. On graphs with
500M vertices and 6B edges, ParE2H (resp. ParV2H) takes
59.7s (resp. 32.5s) to extend edge-cut (resp. vertex-cut) to a
hybrid partition, with 96 workers. (4) The learned functions
accurately estimate computational and communication costs.
The MSRE is below 0.11 for all the algorithms tested. More-
over, the training time is small, e.g., at most 48.6s for gcn.

9 CONCLUSION

We have proposed an application-driven partitioning strat-
egy. For a given graph algorithm A, we have shown how to
learn its cost model, and developed partitioners that refine
an edge-cut or vertex-cut partition to fit in with the cost
patterns of A and speed up parallel execution of A. We
have provided conditions for graph algorithms to be parti-
tion transparent, and developed transparent algorithms for
several problems. Our experimental study has verified that
application-driven partitioning is effective and efficient.
One topic for future work is to extend our cost model to
handle multiple applications run on the same graph. Another
topic is to find other cost metrics for various algorithms.
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