
Capturing Associations in Graphs

Wenfei Fan1,2,3 Ruochun Jin1 Muyang Liu1 Ping Lu3 Chao Tian4 Jingren Zhou4

1University of Edinburgh 2SICS, Shenzhen University 3Beihang University 4Alibaba Group
{wenfei@inf., ruochun.jin@, muyang.liu@}ed.ac.uk, luping@buaa.edu.cn, {tianchao.tc, jingren.zhou}@alibaba-inc.com

ABSTRACT
This paper proposes a class of graph association rules, de-
noted by GARs, to specify regularities between entities in
graphs. A GAR is a combination of a graph pattern and a de-
pendency; it may take as predicates ML (machine learning)
classifiers for link prediction. We show that GARs help us
catch incomplete information in schemaless graphs, predict
links in social graphs, identify potential customers in dig-
ital marketing, and extend graph functional dependencies
(GFDs) to capture both missing links and inconsistencies.

We formalize association deduction with GARs in terms of
the chase, and prove its Church-Rosser property. We show
that the satisfiability, implication and association deduction
problems for GARs are coNP-complete, NP-complete and
NP-complete, respectively, retaining the same complexity
bounds as their GFD counterparts, despite the increased ex-
pressive power of GARs. The incremental deduction problem
is DP-complete for GARs versus coNP-complete for GFDs.
In addition, we provide parallel algorithms for association
deduction and incremental deduction. Using real-life and
synthetic graphs, we experimentally verify the effectiveness,
scalability and efficiency of the parallel algorithms.

1. INTRODUCTION
Association rules [7] have been studied for relational data

for decades and proven effective in market basket analysis,
Web mining, intrusion detection, continuous production and
bioinformatics, among others. When it comes to graphs, the
need for studying association rules is more evident.

Example 1: Consider the following real-life examples.

(1) Marketing. Unlike traditional marketing strategies such
as TV advertising, e-commerce marketing promotes prod-
ucts by association analysis of purchases and user behaviors,
which are often represented as graphs. It has proven impor-
tant: “the visits where the shopper clicked a recommenda-
tion comprise just 7% of visits, but drive an astounding 24%
of orders and 26% of revenue” [59]. Moreover, associations
play a vital role in recommendation systems [5, 15, 38].

For instance, graph G1 of Fig. 1 depicts an e-commerce
recommendation network [63]. A rule for marketing is as fol-
lows: if (a) a shopper Ada follows a store Uniqlo and clicks
product Long-Sleeve Hoodie W sold by it, (b) Uniqlo also
sells Denim Mini Skirt, which is combined with Long-Sleeve
Hoodie W in some package deals, and (c) if the classes of
the two products, Hoodie W and Mini Skirt, are correlated
in women’s shopping activities, then Ada may also be inter-
ested in Denim Mini Skirt; the link is not in G1.

(2) Link prediction. Association rules help us predict links
in social networks. People visiting the same place, having
common friends and similar interests tend to develop friend-
ship [49, 58]. For example, graph G2 in Fig. 1 is taken from
social network Gowalla [39]. It suggests the following: if (a)
two persons Bob and Joe have a common friend Sue, (b) all
of them like to visit cafe Beans, and (c) if Bob and Joe share
the same interest as Sue, then Bob and Joe are likely to be-
come friends; the link between Bob and Joe is absent in G2.

(3) Incomplete information. Unlike relational tables, real-
life graphs typically do not come with a schema. As a result,
it is more common to find information missing from graphs.
As indicated byG3 of Fig. 1, in the knowledge graph adopted
by e-commerce platforms [40], there exist clothing items
(e.g., Winter Dress) without brand or material. To make
them complete items, the missing data need to be added.

(4) Catching both absent links and semantic inconsistencies.

Graph functional dependencies have been studied [26, 21],
referred to as GFDs. Like relational functional dependencies
(FDs), GFDs are universal logic sentences to catch semantic
inconsistencies. However, GFDs stop short of catching
missing links, which have an existential semantics.

On the one hand, GFDs may fail to catch semantic er-
rors when links are missing. Consider graph G4 taken from
DBPedia [36], in which the English and French Chapters
return different populations for France. One can use a GFD
to catch the inconsistency: if two records x and x′ refer to
the same nation, then they must have the same population.
However, if the equivalent link between x and x′ is missing,
then this GFD cannot catch the error. On the other hand,
with such inconsistencies, conventional logical rules fail to
connect the nation records in G5 of Fig. 1. The scale of the
problem is far more staggering in schemaless graphs.

(5) Incorporating machine learning (ML). Association de-
duction requires both logic-based and ML-based methods.
On the one hand, we can use ML classifiers to predict links
above between x and x′. On the other hand, we can use
logic to interpret ML predictions and help improve its accu-
racy. For instance, if an ML classifier “predicts” that movie
Taxi receives Gold Bear and Gold Lion awards (see G6 of
Fig. 1), then we can conclude that the predication is wrong
since the two film festivals require their participants to be
“initial release” and no movie receives both awards. 2

This example gives rise to several questions. What rules
should we use to catch associations? Can we catch missing
links and semantic inconsistencies at the same time? Is it
possible to extend existing graph dependencies (e.g., GFDs)

1



Bob

Sue

Joe

Beans

Eva

person

person

person

person

cafe
!"#$%&

!"#$%&

!"#$%&

'#(#)

'#(#)'#(#)

'#(#)

x

x’

x’’

y

person

person

person

cafe
!"#$%&

!"#$%&

'#(#)

'#(#)

'#(#)

G
2

Q
2

Winter Dress

item

G
3

France
nation

$*+#',-$%)

G
4

“English Chapter”

population:66,736,000

France

nation

“English Chapter”

population:66,317,994

x
nation

$*+#',-$%)
x’

nation

Q
4

France
nation

G
5

“English Chapter”

population:66,736,000

France

nation

“English Chapter”

population:66,317,994

x
nation

x’

nation

Q
5

Jafar Panahi

Taxi

Golden Lion

Golden Bear

person

movie award

award

&#"$.)

"$.$#'$

G
6

"$.$#'$

x

z

y

y’

person

movie award

award

&#"$.)

Q
6

"$.$#'$

Uniqlo

Long-Sleeve Hoodie W

Hoodie W

Denim Mini Skirt

Ada
store

product

class

person

product
($--

)/0$

($--

G
1

Q
1

)/0$

Mini Skirt
class

"$-,)$&1)2

&$,-

.-#.3

!2--24

w

y1

x
store

product

class

person

product
($--

)/0$

($--

)/0$

class

"$-,)$&1)2

&$,-

.-#.3

!2--24

y2

z1
z2

class class

ClothingDress

#(5

#(5

item

Q
3

class class

#(5

#(5

x

y1 y2

Figure 1: Example associations in real-life graphs

to meet the requirements while striking a balance between
the expressive power and complexity? Better yet, can we in-
corporate ML classifiers into the rules such that we can uni-
formly apply rule-based and ML-based methods? Putting
these together, above all, can we make practical use of the
rules to deduce associations in large-scale graphs?

Contributions & organization. This paper makes an
effort to answer these questions, from foundation to practice.

(1) Rules (Section 3). We propose a class of graph associ-
ation rules, denoted by GARs. GARs extend graph pattern
association rules (GPARs) [24] with preconditions, and GFDs
[26, 21] with limited existential semantics. Moreover, GARs
may take embedding-based machine learning (ML) classi-
fiers for link prediction as predicates, and thus provide a uni-
form framework to catch missing links and semantic errors
in graphs, by unifying rule-based and ML-based methods.

(2) Deducing associations (Section 4). We study deducing
associations from real-life graphs. We formalize the problem
by extending the chase [46] with GARs, to uniformly apply
rules and embedding-based ML classifiers. We show that the
deduction has the Church-Rosser property, i.e., the chase
converges at the same answer no matter in which order the
GARs are applied, even though the graphs may mutate.

(3) Complexity (Section 5). We study fundamental prob-

lems for graph associations, including (a) satisfiability to de-
cide whether a set of GARs has no conflicts with each other;
(b) implication to decide whether a GAR is entailed by a
given set of GARs, to reduce redundant GARs; (c) associa-
tion deduction to infer missing links and missing attributes
in a real-life graph; and (d) incremental deduction to deduce
changes to the associations in response to updates to graphs.

We show that while GARs increase the expressive power
of GFDs, the satisfiability, implication and association de-
duction problems retain the same complexity as their coun-
terparts for GFDs. The incremental deduction problem
for GARs is slightly harder than for GFDs, DP-complete
vs. coNP-complete, unless P = NP. That is, GARs indeed
strike a balance between the complexity and expressivity.

(4) A parallel solution (Section 6). To make practical use
of the association analysis, we parallelize the association de-
duction process by adopting the fixpoint computation model
of GRAPE [27]. We show that the parallelization guarantees
to converge at the same set of associations deduced.

Moreover, we provide a parallel incremental algorithm in
response to updates. Real-life graphs frequently change, and
it is costly to re-deduce associations starting from scratch
when graphs change. We incrementally compute changes to
associations, minimizing unnecessary recomputation.

(5) Experimental study (Section 7). Using real-life and syn-
thetic graphs, we empirically verify the effectiveness, scala-

bility and efficiency of our (incremental) deduction methods.
We find the following. (1) GARs are effective in association
deduction by unifying rule-based and ML-based methods.
Our methods have F-measure above 88.3%, and outperform
existing ML and rule-based methods by 21.3% and 28.2% in
accuracy, respectively. (2) Our parallel deduction method
is efficient and scalable; it is 18.1 times faster than existing
deduction methods on graphs of 1.3 billion nodes and edges
with 12 processors. (3) Incremental deduction performs bet-
ter than the batch counterpart even when updates ∆G are
up to 25% of G, e.g., 4.3 times faster when |∆G| = 10%|G|.

This paper focuses on (incremental) deduction of associ-
ations. Besides its immediate applications, the same tech-
niques can be adapted to graph data cleaning [23], fraud de-
tection in transaction networks [47] and annotation analysis
in gene ontology [31]. For instance, putting this and [23]
together, we can develop a uniform process to fix missing
links and inconsistencies with certainty (see Section 4).

Proofs of the results of the paper can be found in [19].

Related work. We categorize related work as follows.

Association rules and graph dependencies. Association rules
[7] aim to capture item relationships in transaction data,
and have proven effective on relational datasets [61]. Simi-
lar rules have been applied on graphs [29] to analyze social
networks, by extracting relations [16, 11]. GPARs [24, 25]
define association rules directly on graphs, for graph data
analysis [28, 51] and knowledge graph search [41].

Different from rule-based solutions, machine learning for-
malizes graph association analysis as the link prediction
problem. Based on statistical learning, link prediction mod-
els first learn low-dimensional vector embedding of each en-
tity and each relation [35]. Then, they predict links over the
embedding via additive functions [10], product-based func-
tions [54, 62], or deep neural networks [48]. While these
models have shown competitive performance on knowledge-
base datasets, their prediction errors are unexplainable.

Graph functional dependencies have recently been pro-
posed for RDF [8, 33, 17] and property graphs [26, 21, 20].
Expressed as universal logic sentences, these dependencies
have been used to catch semantic inconsistencies in graphs.
There has also been work on tuple-generating dependencies
(TGDs [4]) on graphs [13, 14], which are defined with both
universal and existential logic quantifiers.

The novelty of this work consists of the following.

(1) This work makes a first effort to incorporate ML classi-
fiers into logic rules. On the one hand, this framework allows
us to plug in existing ML link predictors and improve the
accuracy of association deduction. On the other hand, it
helps us interpret links predicted by ML classifiers in logic.

(2) We propose a first framework to catch semantic incon-

2



sistencies and missing associations in the same process. In-
deed, inconsistencies can also be modeled as erroneous as-
sociations (Section 4), and should be treated in a uniform
framework for associations. That is why we opt to extend
GFDs [26, 21] to catch missing links and attributes, rather
than to define a class of new rules starting from scratch.

(3) GARs strike a balance between the expressivity and com-
plexity, with necessary yet minimum extensions to GPARs
and GFDs. It is well known that when universal logic rules
and existential rules are put together, their static analy-
ses are often undecidable, e.g., the implication problem for
TGDs (cf. [4]), and for functional dependencies and inclusion
dependencies put together [12]. GARs enrich GFDs (of uni-
versal semantics) with limited existential semantics, while
their satisfiability and implication problems are decidable
in coNP and NP, respectively, the same as for GFDs.

While the complexity bounds for GARs are similar to their
GFD counterparts, the proofs are quite different, in order to
cope with ML classifiers and mutable graphs (see Section 5).

(4) We introduce chasing with GARs on graphs when new
edges may be added in the process. We give one of first
proofs for the Church-Rosser property on such graphs. In
contrast, chasing with TGDs may not even terminate.

(5) GARs extend GPARs [24] with preconditions. This work
provides the first formulation of association deduction with
chase, and the first fundamental results for reasoning about
graph association rules, which were not studied in [24, 25].

Parallel deduction. Several parallel algorithms have been
developed for graph pattern matching (e.g., [27, 6, 9, 45,
50, 44, 34, 53, 43, 45]) and GFD checking [26, 23, 20], based
on the following: (1) work unit distribution [26, 23, 50]; (2)
data replication [20, 27, 9, 44]; (3) pattern decomposition
and multiway join [6, 34, 53, 43]; and (4) pattern match
expansion by fetching data and verifying edges [45, 56].

This work adopts a different approach. (a) We first de-
velop two sequential algorithms for deduction and incremen-
tal deduction of associations. We then parallelize the algo-
rithms following the fixpoint model of GRAPE, with conver-
gence guarantees [27]. These depart from the prior algo-
rithms on GFDs [26, 23, 20]. (b) We process a set of GARs
at the same time, not a single pattern. Moreover, enforc-
ing GARs may mutate the topological structure of graphs.
In contrast, prior algorithms assume static graphs; they do
not work for association deduction. (c) We introduce new
matching and pruning techniques guided by the chase and
associations, without computing the entire set of matches
like pattern matching algorithms. (d) We propose a strat-
egy to reduce redundant mutual effects between different
types of updates in incremental deduction. (e) To the best
of our knowledge, the incremental reduction algorithm also
yields the first incremental graph repairing algorithm.

2. PRELIMINARIES
We start with a review of basic notations. We assume

three countably infinite sets of symbols, denoted by Γ, Υ
and U , for labels, attributes and constants, respectively.

Graphs. We consider directed labeled graphs, specified as
G = (V,E, L, FA), where (a) V is a finite set of nodes; (b)
E ⊆ V ×Γ×V is the set of edges, where e = (v, ι, v′) denotes
an edge from node v to v′ that is labeled with ι ∈ Γ; (c)
each node v ∈ V has label L(v) from Γ; and (d) each node

v ∈ V carries a tuple FA(v) = (A1 = a1, . . . , An = an) of
attributes of a finite arity, where Ai ∈ Υ and ai ∈ U , written
as v.Ai = ai, and Ai 6= Aj if i 6= j, representing properties.

Patterns. A graph pattern is Q[x̄] = (VQ, EQ, LQ, µ), where
(1) VQ (resp. EQ) is a set of pattern nodes (resp. edges), (2)
LQ assigns a label LQ(u) ∈ Γ to each node u ∈ VQ, (3) x̄ is
a list of distinct variables; and (4) µ is a bijective mapping
from x̄ to VQ, i.e., it assigns a distinct variable to each node
v in VQ. We allow wildcard ‘ ’ as a special label in Q[x̄].

For x ∈ x̄, we use µ(x) and x interchangeably.

Example 2: Six patterns are given in Fig. 1. For example,
pattern Q1 shows that shop w sells products y1 and y2 of
classes z1 and z2, respectively, y1 and y2 are linked in a
special offer, z1 and z2 are related in order activities, and
customer x follows shop w and clicks product z1. Patterns
Q2-Q6 in Fig. 1 can be interpreted similarly. 2

Pattern matching. We adopt the homomorphism semantics
following [21, 8, 14]. A match of pattern Q[x̄] in graph G is
a mapping h from Q to G such that (a) for each node u ∈
VQ, LQ(u) = L(h(u)); and (b) for each e = (u, ι, u′) in Q,
e′ = (h(u), ι, h(u′)) is an edge in G. Here LQ(u) = L(h(u))
if LQ(u) is ‘ ’, i.e., wildcard matches an arbitrary label.

We denote the match as a vector h(x̄), consisting of h(x)
for all x ∈ x̄ in the same order as x̄. Intuitively, x̄ is a list of
entities to be identified, and h(x̄) is an instantiation for it.

3. GRAPH ASSOCIATION RULES
We now define graph association rules (GARs).

Literals. A literal of pattern Q[x̄] is one of the following: for
variables x, y ∈ x̄ and attributes A,B ∈ Υ,

◦ attribute literal x.A;
◦ edge literal ι(x, y), where ι is a label in Γ;
◦ ML literalM(x, y, ι), an ML classifier that returns true if

and only if it predicts the existence of edge (x, ι, y);
◦ variable literal x.A = y.B; and
◦ constant literal x.A = c, where c ∈ U is a constant.

GARs. A graph association rule (GAR) ϕ is defined as

Q[x̄](X → Y ),

where Q[x̄] is a graph pattern, and X and Y are (possibly
empty) conjunctions of literals of Q[x̄]. We refer to Q[x̄] and
X → Y as the pattern and dependency of ϕ, respectively.

Intuitively, the pattern Q in a GAR identifies entities in a
graph, and the dependency X → Y is applied to the entities.
Constant and variable literals x.A = c and x.A = y.B spec-
ify value associations to attributes, and attribute and edge
literals x.A and ι(x, y) enforce the existence of attributes
and edges, i.e., attribute and edge associations, respectively.

Moreover, one can “plug in” an existing well-trained ML
classifier M for link prediction, and treat it as a Boolean
predicate, i.e., M(x, y, ι) is true ifM predicts the existence
of a link labeled ι from x to y, and false otherwise. As will
be seen shortly, it allows us to employ embedding-based ML
classifiers in logic rules, and interpret such classifiers in logic.

Example 3: One can use the GARs below to deduce associa-
tions described in Example 1, using patternsQ1-Q6 of Fig. 1.

(1) ϕ1 = Q1[x, y1, y2, w, z1, z2](∅ → Y1), where Y1 consists of
an edge literal like(x, y2). It says that if products y1 and y2

are sold by the same shop w and are connected in a package

3



deal, their corresponding classes are related in buying activi-
ties, and if customer x clicks y1 and follows shop w (specified
in Q1), then x is also a potential customer of product y2.

(2) ϕ2 = Q2[x, x′, x′′, y](X2 → Y2), where X2 is x.interest =
x′.interest ∧ x′′.interest = x′.interest, interest is an attribute
of person entity, and Y2 is friend(x, x′′). It states that if
x′ is a friend of both x and x′′, all of x, x′ and x′′ visit the
same cafe y (specified in Q2), and if the three share common
interest (in X2), then x and x′′ are likely to become friends.

(3) ϕ3 = Q3[x̄](y2.name=“Clothing”→ Y3), where Y3 is de-
fined with attribute literals x.brand ∧ x.material. It enforces
each clothing entity to carry brand and material attributes.

(4) ϕ4 = Q4[x, x′](∅ → Y4), where Y4 is x.population =
x′.population, and population is an attribute of nation entity.
It says that records about the same nation should have the
same population. It is a GFD [26] to catch inconsistencies.

(5) ϕ5 = Q5[x, x′](X5→Y5), where X5 is x.name = x′.name∧
M(x, x′, equivalent), and Y5 is equivalent(x, x′). It states
that if two nations x and x′ have the same name and they
are predicted to be equivalent by an ML classifier (link pre-
dictor)M, then the link (x, equivalent, x′) should be added.
It makes use of existing ML classifiers to catch associations.

(6) ϕ6 = Q6[x, y, y′, z](X6→ false), where X6 is M(z, y′,
receive) ∧ y.name=“Gold Bear” ∧ y′.name= “Gold Lion”.
Here false is a Boolean constant expressed as y.name=c and
y.name=d for distinct constants c and d. Intuitively, it says
that a movie cannot receive both Gold Bear and Gold Lion
awards. This suggests that if M(z, y′, receive) returns true,
then the ML classifier M should be further trained. 2

Semantics. To interpret GAR ϕ = Q[x̄](X → Y ), we use
the following notations. Denote by h(x̄) a match of Q in a
graph G, and l a literal of Q[x̄]. We write h(µ(x)) as h(x),
where µ is the mapping in Q from x̄ to nodes in Q.

We say that h(x̄) satisfies a literal l, denoted by h(x̄) |= l,
if the following condition is satisfied: (a) when l is x.A,
attribute A exists at h(x); (b) when l is ι(x, y), there is an
edge with label ι from h(x) to h(y); (c) when l isM(x, y, ι),
the ML classifier M predicts an edge (h(x), ι, h(y)); (d)
when l is x.A = y.B, attributes A and B exist at h(x) and
h(y), respectively, and h(x).A = h(y).B; and (e) when l is
x.A = c, attribute A exists at h(x), and h(x).A = c.

For a set X of literals, we write h(x̄) |= X if match h(x̄)
satisfies all the literals in X. If X (resp. Y ) is ∅ (i.e., true),
then h(x̄) |= X (resp. h(x̄) |= Y ) for any match h(x̄) of Q
in G. We write h(x̄)|=X→Y if h(x̄)|=X implies h(x̄)|=Y .

A graph G satisfies GAR ϕ, denoted by G |= ϕ, if for all
matches h(x̄) of Q in G, h(x̄) |= X → Y . Graph G satisfies
a set Σ of GARs, denoted by G |= Σ, if G |= ϕ for all ϕ ∈ Σ.

Example 4: Consider graph G2 of Fig. 1 and GAR ϕ2 in
Example 3. Then G2 6|= ϕ2, since there exists a match h1:
x 7→“Bob”, x′ 7→“Sue”, x′′ 7→ “Joe”, y 7→“Beans”, such
that h1(x̄) |= X2, but there exists no edge (“Bob”, friend,
“Joe”) in G2. Hence h1(x̄) 6|= X2 → Y2, i.e., h1(x̄) witnesses
G2 6|= ϕ2. Similarly, Gi 6|= ϕi for other i ∈ [1, 6]. 2

Special cases. We single out three special cases of GARs.

(1) GFDs and graph entity dependencies (GEDs) [26, 21] are
GARs defined with constant and variable literals only, as-
suming that node id is a special attribute. That is, GARs
extend GFDs and GEDs with the existential semantics for

attributes and edges, and by allowing ML classifiers as pred-
icates. For instance, ϕ4 of Example 3 is a GFD but all the
other GARs there cannot be expressed as GFDs or GEDs.
GARs can catch both missing links and semantic errors, as
opposed to GFDs and GEDs that detect inconsistencies only.

(2) GPARs [24] are GARs Q[x̄](∅ → ι(x, y)), in which X → Y
specifies no precondition X and Y is a single edge literal
ι(x, y). In contrast to GARs, GPARs do not allow ML clas-
sifiers. No GAR in Example 3 is expressible as GPARs.

(3) GARs unify logic and ML methods. On the one hand,
Q[x̄](M(x, y, ι) → ι(x, y)) plugs in an ML link predictor
M(x, y, ι), e.g., GAR ϕ5 of Example 3. On the other hand,
GARs Q[x̄](ψ →M(x, y, ι)) help us interpret whyM(x, y, ι)
predicts true with condition ψ. For instance, M in ϕ6 can
be interpreted as Q6[x̄](z.name=y′.movie name∧z.director =
y′.movie director →M(z, y′, receive)), by extracting the at-
tributes from the textual description of movies and awards.

ML classifiers in GARs. GARs support embedding-based
ML classifiers for link prediction. Having sets of entities and
relations denoted by E and R, respectively, these ML classi-
fiers view each link in a graph as a triple (h, r, t), where h ∈ E
is the head, r ∈ R is the relation and t ∈ E refers to the
tail of the triple. Given positive/negative triples as train-
ing data, the classifiers apply tensor factorization to learn
vector representations of entities and relations. During the
learning process, with a predefined similarity function, the
positive triples guide the classifier to embed their vectors
similar while the negative triples force theirs to become dis-
similar. Here all types of entities and relevant information
(all relevant attributes and edges) are considered.

Once the training completes, such an ML classifier M
behaves just like a Boolean function. Given two entities h′, t′

and a relation r′,M(h′, r′, t′) returns a Boolean value. That
is,M maps h′, t′ and r′ to precomputed vectors vh′ , vt′ and
vr′ as their embedding. Then it feeds these vectors to the
similarity function, and returns true (resp. false) if the score
is above (resp. below) the threshold. The hypothesis of such
ML link predictor is that all entities and relations have been
covered by the training data and learned byM [10]; thusM
can find embedding of h′, t′ and r′, and predicts whether h′

is linked to t′ with an r′-edge. That is how the state-of-the-
art embedding-based SimpIE [35] and CompIEx [54] work.

4. DEDUCING ASSOCIATIONS
One of the central issues of the study is to deduce associ-

ations. There are two types of associations: (a) associations
between entities (edge literals) and associations of attributes
to entities (attribute literals); and (b) associations of values
to attributes (variable and constant literals).

We model association deduction by chasing graphs with
GARs. Below we first extend the chase [46] from relations
to graphs (Section 4.1) and then prove its Church-Rosser
property (Section 4.2). Based on these, we will formulate
the association deduction problem in the next section.

4.1 Chasing with GARs
Consider a graph G = (V,E, L, FA) and a set Σ of GARs.

Chase graphs. A chase graph Gc is (V,Ec, L, FAc), where
V and L are from G, Ec = E ∪ ∆Ec, and FAc = FA ∪
∆FAc . Here ∆Ec includes edges added by ML literals and
edge literals during the chase, and ∆FAc includes attributes
added by attribute, constant and variable literals.

4



Chasing. We define a chase step of G by Σ at Gc as

Gc ⇒(ϕ,h) G
′
c,

where ϕ = Q[x̄](X → Y ) is a GAR in Σ and h(x̄) is a match
of Q in Gc such that (a) h(x̄) |= X, and (b) G′c extends Gc

by enforcing one literal l ∈ Y if h(x̄) |= l does not yet hold.
More specifically, based on l, G′c is defined as follows.

◦ If l is x.A, then G′c extends Gc by adding attribute A to
∆FAc(h(x)) with a special value “#” if A 6∈ FA(h(x)). If
A is already in FA(h(x)), its value remains unchanged.

◦ If l is ι(x, y), then G′c extends Gc with edge (h(x), ι, h(y)).

◦ If l is M(x, y, ι), then G′c extends Gc by adding edge
(h(x), ι, h(y)). As a byproduct, it suggests to setM(x, y,
ι) true, i.e., it provides feedback to ML predictor M.

◦ If l is x.A = y.B, then G′c extends Gc by (a) adding at-
tributes A to ∆FAc(h(x)) and B to ∆FAc(h(y)) if the at-
tributes are not there, and (b) letting h(x).A = h(y).B.

◦ If l is x.A = c, then G′c extends Gc by adding attribute A
to ∆FAc(h(x)) if A 6∈ FA(h(x)), and letting h(x).A = c.

Consistency. Conflicts may emerge in a chase step. We say

that chase step Gc ⇒(ϕ,h) G
′
c is invalid if when it enforces

literal l, either (a) l is x.A = y.B, but h(x).A = c and
h(y).B = d are in Gc for distinct c and d, or (b) l is x.A = c,
h(x).A = d is in Gc and c 6= d. Otherwise the step is valid.
We say that G′c is inconsistent if either (a) or (b) happens.

Note that edge and ML literals do not incur inconsisten-
cies as multiple edges can co-exist between a pair of nodes.

Chasing sequences. We start with Gc0 = G in which ∆FAc

and ∆Ec are both ∅. A chasing sequence ρ of G by Σ is

Gc0 , . . . , Gck ,

where for all i ∈ [0, k− 1], there exist a GAR ϕ = Q[x̄](X →
Y ) in Σ and a match h of graph pattern Q in Gci such that
Gci ⇒(ϕ,h) Gci+1 is a valid chase step.

The sequence is terminal if there exist no GAR ϕ ∈ Σ
and match h of pattern Q of ϕ in Gck such that chase step
Gck ⇒(ϕ,h) Gck+1 is valid and can extend Gck . More specif-
ically, the chase terminates in one of the following two cases:

(a) Gck cannot be expanded and Gci is consistent (i∈[0, k]).
If so, the chasing sequence is valid and its result is Gck ; or

(b) at some step i, Gci is inconsistent. If so, the chasing
sequence is invalid, and the result is undefined ⊥.

Prior work on chasing graphs [21, 23] mainly changes at-
tribute values. In contrast, the topological structure of Gc

may be changed by new edges and attributes added when
chasing GARs. Hence when Gc is extended to G′c, we have
to check new possible matches of graph patterns in GARs.

Example 5: Consider the graph G2 shown in Fig. 1. As-
sume that Σ consists of only one GAR ϕ2 in Example 3.
From Gc0 = G2, we have the following chase steps:

(1) Gc0⇒(ϕ2,h1)Gc1 , where match h1 is given in Example 4;
and Gc1 extends Gc0 with edge (“Bob”, friend, “Joe”);

(2) Gc1⇒(ϕ2,h2)Gc2 , where h2 is defined as follows: x 7→
“Bob”, x′ 7→ “Joe”, x′′ 7→ “Eva”, y 7→ “Beans”, and Gc2

extendsGc1 with edge (“Bob”, friend, “Eva”) using ϕ2. Note
that match h2 exists in the mutated chase graph Gc1 only
after the edge (“Bob”,friend,“Joe”) is added in step (1). 2

4.2 The Church Rosser Property
A major concern is whether the chase always terminates

with the same result. Following [4], we say that chasing

with GARs is Church-Rosser if for all graphs G and all sets
Σ of GARs, all chasing sequences of G by Σ are terminal and
converge at the same result, regardless of what GARs in Σ
are used and in what order the GARs are applied.

The analysis of chasing with GARs is harder than the one
in [21], since the ML predictors depend on the structure of
the graph, which in turn affect the prediction and the chase.

Theorem 1: Chasing with GARs is Church-Rosser. 2

Proof sketch: The proof consists of two steps. (1) The
size of chase graph Gci is bounded by |G|2|Σ|, since between
each pair of nodes, the labels of new edges are constrained
by GARs in Σ, and hence at most |Σ| edges can be added;
similarly for attributes added and values changed. Since
each chase step makes at most one change, the length of
any chasing sequence is at most 4|G|2|Σ|. (2) All chasing
sequences terminate at the same result. If there exist two
terminal sequences having different results, then one of them
is not terminal, a contradiction. As opposed to the chase
with GEDs [21], here we have to show that the prediction of
ML classifier remains stable during the chase. Moreover, we
have to find new matches when the chase graph is expanded
with new edges; the graph is no longer static. 2

By Theorem 1, we define the result of chasing G by Σ
as the result of any terminal chasing sequence of G by Σ,
denoted by Chase(G,Σ). If the sequence is valid, Chase(G,Σ)
has the form of Gc. We refer to edges and attributes that
are in Gc but not in G as deduced associations of G by Σ.
Intuitively, they are missing links and attributes. We denote
by deduced(G,Σ) the set of all such deduced associations.

As shown in Section 3, we can use deduced associations to
retrainM, improve its accuracy and explain its prediction.

5. FUNDAMENTAL PROBLEMS
We next settle the satisfiability, implication, association

deduction and incremental deduction problems. Our main
conclusion is that for GARs, these problems either retain the
same complexity as for GFDs, or are slightly harder than for
GFDs, despite the increased expressivity of GARs. However,
the proofs are rather different, to cope with, e.g., unexpected
conflicts introduced by ML classifiers. None of these prob-
lems has been studied for graph association rules [24, 25].

Satisfiability. The satisfiability problem is as follows.

◦ Input: A set Σ of GARs.
◦ Question: Does there exist a graph G such that G |= Σ

and for each GAR Q[x̄](X → Y ) ∈ Σ, Q has a match in G?

Intuitively, this is to ensure that Σ is sensible and all GARs
can be simultaneously applied without conflicts.

For GFDs, the satisfiability problem is coNP-complete [21].
We next show that this problem is no harder for GARs.

Theorem 2: The satisfiability problem is coNP-complete. 2

Proof sketch: (1) For the upper bound, given a set Σ of
GARs, we define a canonical graph GΣ by combining all pat-
terns in Σ into one. We show that Σ is satisfiable if and only
if Chase(GΣ,Σ) is consistent and GΣ is no larger than Σ. As
opposed to the proofs for GEDs [21] and other extensions of
GFDs [20], (a) when constructing GΣ, we have to take special
care of wildcards to avoid conflicts introduced by predictions
of ML classifiers; and (b) take newly deduced edges into ac-
count when checking the consistency of Chase(GΣ,Σ). Based
on the characterization, we give an NP algorithm to check

5



whether Σ is not satisfiable. (2) The lower bound follows
from the coNP-completeness of the satisfiability problem for
GFDs [21], since GFDs are a special case of GARs. 2

Implication. A set Σ of GARs implies a GAR ϕ, denoted
by Σ |= ϕ, if for all graphs G, if G |= Σ then G |= ϕ. That
is, ϕ is a logical consequence of Σ and hence, is redundant.

The implication problem is stated as follows.

◦ Input: A set Σ of GARs and a GAR ϕ.
◦ Question: Σ |= ϕ?

The need for studying this problem is evident, to remove
redundant rules and hence speed up deduction process.

For GFDs, the implication problem is NP-complete [21].
GARs extend GFDs with (limited) existential semantics. It
is known that the problem becomes harder when we put
dependencies of universal semantics and those of existential
semantics together. For instance, the implication problem
is undecidable for functional dependencies and inclusion de-
pendencies together [12]. The implication problem for tuple-
generating dependencies (TGDs) is also undecidable (cf. [4]),
which infers the existence of relational tuple patterns.

The good news is that the implication analysis of GARs
has the same complexity as its counterpart for GFDs [21],
as opposed to TGDs. This is because (1) chasing with GARs
does not generate new nodes; (2) while GARs enforce the
existence of edges and attributes, the new additions are con-
fined to those specified in GARs only. Taken together, these
ensure that chasing with GARs will end up with a finite
graph. In contrast, chasing with TGDs [4, 13, 14] may lead
to infinite graphs and hence may not terminate.

Theorem 3: The implication problem is NP-complete. 2

Proof sketch: (1) It is NP-hard since GFD implication is
NP-complete [21] and GARs subsume GFDs as a special case.
(2) For the upper bound, given a set Σ of GARs and a GAR
Q[x̄](X→Y ), we build another canonical graph GQ with Q,
and show that Σ|=ϕ if and only if either X is inconsistent or
all literals in Y can be deduced from Chase(GQ,Σ). Similar
to the proof of Theorem 2, here we also deal with possible
conflicts introduced by ML classifiers and graph mutation
during the chase. Based on the characterization we then
develop an NP algorithm to check whether Σ |= ϕ. 2

Deduction. To simplify the discussion, we focus on de-
ducing missing attributes and missing links, although the
techniques developed in this paper can be readily used to
deduce all associations, including values associated to at-
tributes. That is, GARs can deduce missing links/attributes
and correct inconsistencies in the same framework.

Consider a graph G = (V,E, L, FA). For a node v ∈ V
and an attribute A ∈ Υ, if v.A does not exist in G, we refer
to v.A as a candidate attribute of v in G. Similarly, for
nodes v1, v2 ∈ V and label ι ∈ Γ, if (v1, ι, v2) is not in G, we
refer to it as a candidate edge of G. We refer to such v.A
and (v1, ι, v2) as candidate associations of G, denoted by α.

The association deduction problem is stated as follows.

◦ Input: Graph G, GARs Σ, and a candidate association α.
◦ Question: Is α a deduced association of G by Σ, i.e.,

whether α ∈ deduced(G,Σ)?

This problem is to settle the complexity of computing
deduced(G,Σ), the set of all links and attributes that are
missing from graph G and are deduced by the set Σ of GARs.

A similar problem is studied in [23], to deduce value as-
sociations v.A = c or v.A = v′.B using GFDs [21]. That
problem is known NP-complete [23]. Below we show that
deducing associations with GARs is no harder.

Theorem 4: The association deduction problem for GARs
is NP-complete. 2

Proof sketch: (1) We give an NP algorithm that guesses
a chasing sequence Gc0 , . . . , Gck of bounded length, and
checks whether α is in Gck . Its correctness follows from the
bound on chasing sequences given in the proof of Theorem 1.
(2) We show that the problem is NP-hard by reduction
from the 3-colorability problem, which is NP-complete [30].
The latter problem is to decide, given an undirected graph
G1=(V1, E1), whether there exists a 3-coloring ν of G1 such
that for each edge (u, v) ∈ E1, ν(u) 6= ν(v). 2

Incremental deduction. We consider batch updates ∆G
to graph G, which are sequences of unit updates:

◦ edge insertion (insert e), possibly with new nodes, and
◦ edge deletion (delete e), along with endpoints of degree 0.

These can simulate modifications of e.g., edge labels.
We use G⊕∆G to denote the graph G updated by ∆G.

We use deduced∆(G,∆G,Σ) to denote the set of changes
to the set deduced(G,Σ) of associations in response to up-
dates ∆G, i.e., associations that are either in deduced(G,Σ)
but not in deduced(G⊕∆G,Σ), or vice versa.

The incremental deduction problem is stated as follows.

◦ Input: A graph G, a set Σ of GARs, a batch update ∆G
to G, and a candidate association α of G or G⊕∆G.
◦ Question: Is α ∈ deduced∆(G,∆G,Σ)?

The need for studying this problem is evident. It is costly
to compute deduced(G ⊕ ∆G,Σ) starting from scratch, by
Theorem 4. Hence we want to incrementally compute the
changes to deduced(G,Σ) such that deduced(G ⊕ ∆G,Σ)
= deduced(G,Σ) ⊕ deduced∆(G,∆G,Σ) by making maxi-
mum reuse of deduced(G,Σ). When ∆G is small, often so is
deduced∆(G,∆G,Σ), which is less costly to compute.

No matter how important, the problem is nontrivial. A
related problem, known as the incremental validation prob-
lem, was studied for GFDs, to decide whether a match h(x̄)
is a violation of GFDs in G ⊕ ∆G but not in G, and vice
versa [20]. It is shown coNP-complete. Below we show that
the incremental deduction for GARs is DP-complete. The
complexity class DP is slightly harder than NP unless P =
NP, since DP consists of decision problems that are the in-
tersection of an NP problem and a coNP problem [42].

Theorem 5: The incremental deduction problem is DP-
complete for GARs, and remains DP-hard when either graph
G or updates ∆G to G has a constant size. 2

The increased complexity arises from the following. Given
a match h(x̄) in graph G (resp. G ⊕ ∆G), we can check
whether h(x̄) is a new (resp. old) violation of GFDs in PTIME
by directly inspecting h(x̄) in G⊕∆G (resp. G). In contrast,
for an association α in deduced(G,Σ) (resp. deduced(G ⊕
∆G,Σ)) with GARs, we need to inspect the entire chasing
sequence to verify that α is not in deduced(G⊕∆G,Σ) (resp.
deduced(G,Σ)), which requires an NP step and a coNP step.

Proof sketch: (1) To check if α ∈ deduced∆(G,∆G,Σ), an
algorithm is as follows: (a) check whether α ∈ deduced(G,Σ)
or α ∈ deduced(G ⊕ ∆G,Σ); if so, continue; otherwise, re-

6



turn false; (b) check whether α 6∈ deduced(G,Σ) or α 6∈
deduced(G ⊕ ∆G,Σ); if so, return true; otherwise, return
false. The correctness follows from the statement of the in-
cremental deduction problem and the following property of
set theory: (A \B)∪ (B \A) = (A∪B) \ (A∩B) = (A∪B)
∩(A∪B), where A and B are two sets. The algorithm is in
DP as step (a) is in NP and step (2) is in coNP by Theorem 4.

(2) We show the DP-hardness by reduction from the critical
3-colorability problem, which is DP-complete [42]. The lat-
ter is to decide, given an undirected G1 = (V1, E1), whether
G1 is not 3-colorable, but deleting any node makes G1 3-
colorable (see Theorem 4 for 3-colorability). The reduction
uses a constant-size G and ∆G of a single edge insertion. 2

6. PARALLEL DEDUCTION ALGORITHM
In this section we show how to deduce associations with

GARs in parallel by using the computation model of GRAPE
[27]. We first review the GRAPE model (Section 6.1). We
then provide algorithms for parallel association deduction
(Section 6.2) and incremental deduction (Section 6.3).

6.1 Graph Centric Parallelization
Employing a master P0 and a set of n workers (processors)

P1, . . . , Pn, GRAPE operates on a graphG that is fragmented
into (F1, . . . , Fn) by a partitioner picked by users. For i ∈
[1, n], each worker Pi maintains a fragment Fi in G.

PIE program. To answer a class Q of queries on graphs,
GRAPE takes a PIE program (PEval, IncEval, Assemble) that
consists of three (existing) sequential algorithms as follows.

◦ PEval is a sequential algorithm for Q that given query
Q ∈ Q and graph G, computes answers Q(G) to Q in G.
◦ IncEval is a sequential incremental algorithm for Q that

given Q, G, Q(G) and updates M to G, computes changes
∆O to Q(G) such that Q(G⊕M) = Q(G)⊕∆O.
◦ Assemble collects partial answers computed locally at

each worker by PEval and IncEval, and combines them
into a complete answer; it is typically simple.

The only additions to existing sequential algorithms are
the following. (1) PEval declares a set x̄i of update parame-
ters for each fragment Fi, which are status variables of “bor-
der nodes” of Fi, e.g., nodes having edges from or to another
fragment Fj (assuming edge-cut partition). (2) PEval also
defines an aggregate function faggr to resolve conflicts, when
the status variable of a node is given multiple values by dif-
ferent workers. These parameters are shared with IncEval.

Parallel computation. Given a query Q ∈ Q, GRAPE
posts the same Q to all workers. Then a PIE program is
executed in supersteps under BSP model [55], as follows.

(1) Partial evaluation (PEval). In the first superstep, PEval

computes Q(Fi) at each worker Pi on Fi locally, in parallel
for all i ∈ [1, n]. Then, each worker generates a message
consisting of update parameters x̄i and sends it to master P0.

(2) Incremental computation (IncEval). In the following su-

persteps, the partial answers Q(Fi)’s are iteratively updated
by IncEval. More specifically, (a) master P0 applies faggr to
messages from the last superstep, which resolves conflicts.
Then these aggregated values are routed to relevant workers.
(b) Upon receiving the message Mi, worker Pi incrementally
computes Q(Fi ⊕Mi) with IncEval in parallel for i ∈ [1, n],
by treating Mi as updates. At the end of each superstep,

Input: Fragment Fi = (Vi, Ei, Li, FAi
) and a set Σ of GARs.

Output: Set Q(Fi) of missing links and attributes of Fi w.r.t. Σ.
Declaration: for each node v ∈ Vi, two variables v.link and

v.attr; and an additional variable Fi.H;
1. Ψ← Σ; CV ← Vi; Fi.H ← ∅;
2. repeat
3. ∆Fc ← ∅;
4. for each GAR ϕ = Q[x̄](X → Y ) ∈ Ψ do
5. extract a set T of partial matches h(x̄p) for Q

s.t. X (resp. Y ) can be (resp. cannot be) satisfied;
6. (Ac, Hp)← ExpandAssoc(ϕ, T , CV , Fi);
7. ∆Fc ← ∆Fc ∪Ac; Fi.H ← Fi.H ∪Hp;
8. update Fi with ∆Fc;
9. adjust CV using nodes of ∆Fc; Ψ← SuccGAR(Σ,∆Fc);
10. until ∆Fc = ∅
11. Q(Fi) stores the deduced associations;

Figure 2: PEval for program PDeduce

worker Pi sends a message to P0 that consists of changes to
the update parameters x̄i of Fi just like in PEval.

(3) Termination. The process proceeds until it reaches a fix-
point, i.e., no more changes to update parameters. Assemble
is then invoked to combine all partial answers into Q(G).

PIE programs guarantee to converge at correct answers
under a monotone condition as long as the sequential PEval,
IncEval and Assemble are correct [27]. Moreover, PIE pro-
grams also work under asynchronous models [22].

6.2 Parallel Association Deduction
We next provide a PIE program, denoted by PDeduce.

Given a fragmented graph G and a set Σ of GARs, it
computes deduced(G,Σ). We give its PEval, IncEval and
Assemble, which are parallelized as described in Section 6.1.

Challenges. As indicated in Section 4, a major task for
deducing associations is to compute homomorphic map-
pings. Most subgraph matching methods preprocess graphs
to build static indices, and enumerate matches by accessing
candidates in the indices. However, these do not work in
our setting for the following reasons. (1) During the chase,
graphs are mutated and new matches are introduced at run-
time, as opposed to static graphs and indices. (2) Prior
methods often take a single graph pattern as input and find
its matches. In contrast, the chase handles a set of GARs,
and PDeduce has to decide which GARs to use and in what
order the GARs are applied. (3) Even for a single pattern in
a GAR, PDeduce needs to identify only a subset of matches
that make missing associations, not all the matches.

In light of these, we propose to (1) compute matches only
for patterns from active GARs, in an incremental manner; (2)
use a dynamic matching order and simple indices that are dy-
namically maintained; and (3) employ an association-guided
strategy to prune matches. These help us avoid checking
useless matches that do not contribute to deduced(G,Σ).

To simplify the discussion, we assume that graphs are
partitioned via edge-cut and all the patterns are connected.

PEval. PEval of PDeduce is given in Fig. 2. It takes a
set Σ of GARs and a fragment Fi of graph G as input, and
deduces a set Q(Fi) of associations pertaining to Fi with Σ.
It employs two status variables v.link and v.attr for each node
v in Fi, recording v’s adjacent edges and attribute values,
respectively. It also uses a “global” status variable Fi.H to
store partial matches of the patterns in Σ that involve nodes
residing at other workers, where a partial match maps only

7



V1

V2
V3

V5

V6

V7

V4
V8

W1

W2

u1

u2

x

x’ z

y

person

person

product

style

acceptfriend

fashion

(b)(a)
G Q7

P1
P2

b
8 b

9

b
8

b
10

b
5

b
1

b
2
u3

u4
b
2

b
3

b
4

b
4

b
7

b
5

b
5

b
5

b
5b

6

b
10

b
9

b
5

like
w3

u5

Figure 3: Example graph and pattern

a subset of pattern nodes. The update parameters of Fi

include (a) Fi.H to pass partial matches to other workers,
and (b) v.link and v.attr of border nodes v to reconcile values,
where border nodes are those that are within maxQ∈Σ|Q|
hops of the nodes on edges crossing different fragments.

Algorithm PEval iteratively applies active GARs in Σ,
guided by active nodes in fragment Fi (lines 2-10). Here
a GAR (resp. node) is active if it can be enforced (resp. in-
volves in the mapping) in a chase step for deducing new
associations in the current iteration. The active GARs and
nodes are collected in sets Ψ and CV , initially Σ and Vi, re-
spectively (line 1). For each active GAR, it first extracts a
set T of partial matches under certain conditions (line 5),
and then completes them and deduces associations Ac via
procedure ExpandAssoc (line 6). At the end of each itera-
tion, it updates Fi with the new associations ∆FC that are
accumulated during this iteration (line 8), and adjusts Ψ
and CV for the next iteration (line 9). The iterations pro-
ceed until no new associations can be deduced (line 10). The
associations deduced in the process are stored in Q(Fi).

PEval employs the following new techniques.

Indices. We maintain (a) an index on each pattern node
label ι (except wildcard) that occurs in Σ to fetch nodes
labeled with ι in Fi; (b) an index on triples 〈v, ι, η〉 to fetch
edges incident to node v that are labeled ι and link to nodes
labeled η. The index on the triples is dynamically updated
when newly deduced edges are added to fragment Fi.

Match extraction. For an active GAR Q[x̄](X → Y ), PEval
maps pattern nodes x̄p (x̄p ⊆ x̄) in literals X and Y to nodes
in Fi, to extract partial matches h(x̄p) (line 5), so that h(x̄p)
can (resp. cannot) satisfy X (resp. Y ). This is conducted by
using the index on pattern node labels and choosing nodes
within |Q| hops of the active nodes CV , by the locality of
pattern matching. One can verify that only partial matches
of this form can contribute to new associations.

Match completion. Procedure ExpandAssoc completes par-
tial match h(x̄p) by iteratively mapping the remaining x̄\ x̄p
to nodes in Fi, following a dynamic candidate-size order [32]
(line 6). That is, each time it maps a pattern node u that
is connected to one of the matched pattern nodes, and cur-
rently has the minimum number of candidates. The candi-
dates are inspected using the index on relevant triples, and
each extended partial match should not satisfy X → Y .

Once the partial h(x̄p) is extended to a complete match
h(x̄) and h(x̄) includes active nodes of CV , it deduces rel-
evant associations directly and prunes all subsequent at-
tempts for extending h(x̄p) when pattern nodes in Y are
already mapped in h(x̄p) (i.e., association-guided pruning).
Indeed, while there may be other extensions of h(x̄p), they
do not introduce new associations. ExpandAssoc also returns
the set Hp of partial matches that involve border nodes and
hence need to be expanded at other workers. The status
variable Fi.H is extended with partial matches Hp (line 7).

Input: Fragment Fi=(Vi, Ei, Li, FAi
), set Σ of GARs, message Mi.

Output: Missing associations Q(Fi ⊕Mi) deduced.
Declaration: Message Mi = {v.A, (v, ι, v′) | v, v′ ∈ Vi, v.A and

(v, ι, v′) changed} ∪ {h(x̄p) | h(x̄p) is a partial match
involving nodes in Vi}

1. collect the nodes (resp. changes) of Mi into CV (resp. ∆Fc);
2. Ψ← SuccGAR(Σ,∆Fc) ∪ {ϕ | ∃h(x̄p) ∈Mi, h(x̄p) is a partial

match of the pattern of ϕ}; Fi.H ← ∅;
3. update Fi with ∆Fc;
4. apply active Ψ on Fi iteratively to deduce new associations;
5. Q(Fi ⊕Mi) stores the deduced associations that are

accumulated over supersteps;

Figure 4: IncEval for program PDeduce

Active GARs and nodes. After each iteration, we revise CV
with those nodes involved in the newly deduced associations
∆Fc and derive active GARs by procedure SuccGAR for the
next iteration (line 9). Extending templates that generalize
nodes to their labels [23], SuccGAR picks such active GARs
that have the same templates in their preconditions (or pat-
tern edges) as that of the associations in ∆Fc. For instance,
a GAR becomes active if it has a literal x.A = y.B in its X
and there is a new association v.A = 1 with L(v) = LQ(x).

Example 6: A fragmented graph G is shown in Fig. 3(a)
(excluding dotted edge), where v1 to v8 denote persons, u1 to
u2 are classes, u3 to u5 are products, w1 denotes a shop and
w2 to w3 are styles; labels b1 to b10 are related to, type, deal,
sell, friend, follow, click, accept, fashion and like, respectively.

Consider a set Σ of GARs including ϕ1 of Example 3 and
ϕ7 = Q7[x, x′, y, z](∅ → like(x, y)), where Q7 is depicted in
Fig. 3(b) and ϕ7 predicts the interest of a person.

Given G and Σ, a partial match h′1 of Q1 from ϕ1 is ex-
tracted by PEval at worker P1 in the first iteration, where
x7→v1, w 7→w1, y1 7→u4, y2 7→u3, z1 7→u2 and z2 7→u1. Since h′1
is already a complete match and h′1 6|=Y1, it adds association
(v1, like, u3) at P1. The other partial matches with x 7→v1

and y2 7→u3 are dropped by association-guided pruning.
Then ϕ7 is treated as an active GAR for the second itera-

tion since Q7 has a pattern edge (x′, like, y) sharing the same
template with the newly deduced association. PEval next
extracts a partial match h′2 for Q7 that maps x′ (resp. y) to
active node v1 (resp. u3). When completing h′2 by procedure
ExpandAssoc, z of Q7 is mapped ahead of x since z has only
one candidate w2 whereas x has four (v2, v3, v5, and v7). In
fact, only a singe complete match of Q7 is finally expanded
from h′2 and it yields a new association (v5, like, u3).

PEval also finds a partial match h′3 of Q7 in the first it-
eration at worker P1. It maps x to v8, x′ to v4 and y to
u5. Since h′3 involves v8 and u5 that reside at worker P2

(crossing-edges are maintained by both workers), the par-
tial match h′3 will be sent to P2 for further completion. 2

At the end of PEval, master P0 collects the status variables
of border nodes v from all fragments. It applies aggregate
function faggr (not shown) to reconcile v.link and v.attr, and
routes the aggregation and partial matches of Fi.H to rele-
vant workers as messages. If conflicts emerge in attributes
v.attr of any node v, P0 terminates the process immediately,
i.e., the chase result is undefined ⊥ (see Section 4.1).

IncEval. As shown in Fig. 4, IncEval of PDeduce also de-
duces new associations incrementally. At worker Pi, it is
triggered by message Mi that includes all the changes to
the status variables of the border nodes in fragment Fi, and
a set of partial matches to be further expanded at Fi.

8



Unlike PEval that initially makes the set Σ of GARs and
the set Vi of nodes in Fi active, IncEval determines initial
active nodes and GARs according to the changes and par-
tial matches passed over in message Mi (lines 1-2). It treats
the received changes directly as ∆Fc and updates fragment
Fi with ∆Fc (line 3). After that, IncEval applies active
GARs iteratively to deduce new associations pertaining to
Fi (line 4), along the same lines as that in PEval, i.e., lines
2-10 of Fig 2. The difference is that it also considers the par-
tial matches in Mi, which are expanded just like extracted
partial matches. IncEval stores the deduced associations that
are accumulated over iterations as partial result Q(Fi⊕Mi).

At the end of IncEval, changes to the status variables of
border nodes in Fi are sent to P0. Master P0 then aggregates
the changes and sends messages just like in PEval.

Example 7: Continuing with Example 6, upon receiving
partial match h′3 at worker P2, IncEval completes it by map-
ping the only remaining pattern node z of Q7 to w2. It then
yields a missing link (v8, like, u5) deduced as a new associa-
tion. This is a local edge for worker P2 and it will be used
to update both the fragments and indices at P2. 2

Assemble. When no more associations can be deduced,
Assemble takes the union of partial results Q(Fi⊕Mi) from
all workers Pi, i.e., associations deduced from all fragments.

Correctness. Although PEval and IncEval compute associa-
tions simultaneously on multiple workers, the correctness of
this parallel association deduction method is warranted.

Proposition 6: PIE program PDeduce correctly computes
the result deduced(G,Σ) of chasing G by Σ in parallel. 2

Proof: The result returned by PDeduce is in deduced(G,Σ).
This follows from the definition of the chase, since no associ-
ations are deduced by PDeduce until partial matches become
complete and X → Y is not satisfied (lines 5-6 in PEval and
line 4 in IncEval). Conversely, by induction on the chase
steps, it can be verified that all associations in deduced(G,Σ)
are computed by PDeduce as PEval and IncEval inspect all
candidate (partial) matches that can contribute to deduc-
tion of new associations (lines 6 and 4, respectively). 2

6.3 Incremental Deduction of Associations
As remarked in Section 5, real-life graphs frequently

change and association deduction is costly over large-scale
graphs. These highlight the need for incremental associa-
tion deduction, e.g., in updating the the recommendation
of products in e-commerce. Algorithm IncEval of PDeduce
aims to handle restricted updates to status variables (Sec-
tion 6.2), not general batch updates described in Section 5.
We next develop a parallel algorithm for incremental deduc-
tion, denoted by IncDeduce, by extending PDeduce.

Challenges. Essential to incremental deduction is analyz-
ing different impacts of the inserted and deleted edges on
deduced(G,Σ). Inserted edges could trigger the generation
of new associations, while deleted ones make some old asso-
ciations invalid, which hence have to be removed.

We say that a deduced association α′ is affected by an
edge e in graph G (resp. another deduced association α) if
e (resp. α) is involved in the homomorphic mapping or pre-
condition checking of a chase step in the chasing sequence
that leads to the deduction of α′. Then an invalid associa-
tion must be affected by some deleted edges e. However, the
opposite does not always hold. That is, there exist deduced

Input: Fragmented chase graph Gc with auxiliary information,
a set Σ of GARs and batch update ∆G = (∆G+,∆G−).

Output: The changes deduced∆(G,∆G,Σ).

1. update Gc with ∆G; deduced+
∆ := ∅;

2. deduced−∆ ← DisAssoc−(Gc,Σ,∆G−);

3. update Gc with deduced−∆;
4. Ac ← RefineAssoc(Gc,Σ,∆G);

5. refine deduced+
∆ and deduced−∆ by Ac;

6. update Gc;

7. return deduced∆(G,∆G,Σ) = (deduced+
∆, deduced−∆);

Figure 5: Algorithm IncDeduce

associations that are affected by edges e in ∆G but remain
valid after updating graphs, since the associations can be
deduced by other chasing sequences without the need of e.

Instead of first removing all the associations affected by
deleted edges and then recovering those valid ones, algo-
rithm IncDeduce reduces redundant computation by check-
ing each affected association as soon as it is encountered and
stopping further propagation from the valid ones to others.

Auxiliary structures. In addition to the indices of PDeduce,
for each edge e (resp. deduced association α), IncDeduce
maintains a set d(e) (resp. d(α)) to store associations α′ if
the last chase steps for deducing α′ include e (resp. α) in
their mappings or precondition checking. Here e (resp. α)
is also in d(e) (resp. d(α)). Note that these structures can
be readily obtained when running PDeduce; their sizes are
polynomial in |G| and |Σ| (the proof of Theorem 1).

Algorithm. As shown in Fig. 5, IncDeduce takes as in-
put Σ, ∆G and moreover, the chase graph Gc and the cor-
responding auxiliary structures that are cached after the
batch execution of PDeduce and are distributed across work-
ers. Denote by ∆G+ and ∆G− the inserted and deleted
edges in ∆G, respectively. IncDeduce computes the changes
deduced∆(G,∆G,Σ) to the old associations deduced.

After adjusting Gc with update ∆G (line 1), IncDeduce
computes the changes in two steps. (1) It first invokes
procedure DisAssoc− to find a set deduced−∆ of associations
that newly become invalid in response to deletions ∆G−

(line 2). (2) It then refines deduced+
∆, i.e., newly introduced

associations due to insertions, and deduced−∆ by using the
associations Ac derived via procedure RefineAssoc; it up-
dates the corresponding parts in Gc (lines 4-6). The pair
(deduced+

∆, deduced−∆) is returned as the output (line 7).
We next show that each of the two steps can be imple-

mented as a PIE program by revising PDeduce.

(1) Catching invalid associations. DisAssoc− identifies in-

valid associations in response to deletions ∆G−, by extend-
ing PDeduce. In contrast to deducing new associations, here
we need to find affected associations that may become in-
valid, and check whether they can be deduced by other chas-
ing sequences as soon as possible in PEval and IncEval.

More specifically, PEval selects nodes in affected associa-
tions as initial active nodes, which are fetched from d(e) for
each deleted edge e. It initializes active GARs with those
having the same templates in their consequences Y as those
of affected associations d(e). PEval iteratively inspects af-
fected associations and enforces active GARs to check their
validity. In addition, when examining affected associations,
extracted partial matches must involve nodes of affected
ones, such that they satisfy Y of active GARs. Moreover,
only updated parts of the graph and those associations that

9



have been confirmed valid are accessed to construct matches.

If an affected association α can still be deduced, PEval
marks α valid and removes it from the set of affected associ-
ations, i.e., further checking of d(α) is avoided. Otherwise α
is marked invalid and associations in d(α) except α are taken
as affected associations for inspection in the next round.

Algorithm IncEval is extended analogously. Note that the
master worker monitors and coordinates the progress of the
checking of the same affected association α at different work-
ers, via message passing. It notifies the designated worker
that maintains association α if all deduction attempts fail.
After all the affected associations have been validated, the
other deduced ones are also marked valid by IncEval.

(2) Refinement. Procedure RefineAssoc deduces new associ-

ations in response to inserted edges ∆G+. It revises PDeduce
as follows: (a) the active nodes in PEval are initialized with
the local vertices in ∆G+ and those in the invalid associ-
ations, from which initial active GARs are derived accord-
ingly; and (b) the associations in deduced−∆ are filtered out
when extracting and completing partial matches, unless they
have been deduced in RefineAssoc. Intuitively, modification
(a) limits “the scope” of active nodes and GARs by treating
inserted edges themselves as new associations. Modification
(b) is to reduce false positives, as those old associations may
become invalid due to edge deletions. RefineAssoc returns
both newly introduced and valid affected ones, which are
used to adjust the output of the prior step. In particular,
RefineAssoc ensures that each deleted (resp. inserted) edge
e is added to deduced+

∆ (resp. deduced−∆) if e is marked as
valid (resp. is deduced as an old association).

Example 8: Recall graph G and GARs Σ from Exam-
ple 6. Consider ∆G that inserts (v5, friend, v6) and deletes
(v1, friend, v5). IncDeduce first checks association affected by
the deletion, which is (v5, like, u3). Since this link can be de-
duced with the insertion in a way similar to Example 6, it
remains valid and IncDeduce stops further checking of as-
sociations depending on it. Besides, no new association is
deduced during the refinement phase in this case. Hence the
result of batch PDeduce (Example 6) remains stable. 2

The correctness of IncDeduce can be verified along the
same lines as Proposition 6. Besides, we have the following.

Proposition 7: The associations in deduced(G⊕∆G,Σ) \
deduced(G,Σ) are computed without any unnecessary invalid
attempts in algorithm IncDeduce. 2

Proof: Since each association in deduced(G⊕∆G,Σ) \
deduced(G,Σ) must involve inserted edges or is a recovery
of one deleted edge, it is computed by IncDeduce in step (2),
using updated graph and valid associations. Moreover, once
an association is confirmed valid, it cannot become invalid
any more, since the validations are conducted iteratively by
capturing all prior impacts of edge deletions in step (1).
Thus no invalid new association is derived in IncDeduce. 2

7. EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we evaluated the ac-

curacy, efficiency and scalability of our (incremental) associ-
ation deduction algorithms. We also conducted a case study
to demonstrate the effectiveness of GARs with real-life data.

Experimental setting. We used six real-life graphs as
summarized in Table 1. In particular, Orkut is a large social
network without informative attributes that can be used by

Dataset Type Vertices Edges
DBpedia [1] knowledge base 6.2M 33.4M
YAGO2 [52] knowledge base 2M 5.7M

Pokec [3] social network 1.6M 30.6M
Patent [37] citation network 3.7M 16.5M
IMDB [2] knowledge graph on movies 16.7M 43.2M
Orkut [57] social network 3M 117M

Table 1: Real-life graphs

GARs. We evaluated the efficiency of enforcing various GARs
on it, and randomly included 20 attributes in Orkut.

We also generated synthetic graphs with size up to 300
million vertices and a billion edges, to test scalability.

Updates. We generated random updates ∆G for real-life and
synthetic graphs, controlled by the size |∆G| and the ratio
τ of edge deletions to insertions. We set τ to 1 by default,
i.e., the sizes of graphs remain stable after the updates.

ML classifiers. We adopted SimplE [35] and ComplEx [54]
to implement the ML classifier M for link prediction. We
followed the protocol of [54, 35] to prepare training data; we
obtained positive triples from original graphs and negative
ones by combining entities and relations randomly. We cre-
ated on average two negative samples per positive one for
training, using 55% edges of each graph. We followed the
PyTorch framework, the hyper-parameter search strategy
and training settings of [54, 35] to train classifier M.

GAR generator. For each graph, we generated GARs using
the training data in three steps. (1) We first added all miss-
ing links predicted by the ML classifier between the nodes
covered by training data. (2) We next applied an extension
of the discovery algorithm for GFDs [18] on the subgraph
pertaining to updated training data to derive GARs. Start-
ing from frequent single-node patterns, the algorithm in [18]
interleaves vertical spawning to extend the patterns and hor-
izontal spawning to find attribute dependencies. Apart from
constant and variable literals considered in [18], we removed
some edges from the discovered patterns and included them
as edge literals in GARs. Attribute literals were added with
attributes that appear in the matches. (3) After these, we re-
placed certain edge literals ι(x, y) with ML literalsM(x, y, ι)
in the GARs mined, such that M predicts the existence of
missing edges (v, ι, v′) in the training data.

We discovered 200 (resp. 150, 100, 200, 200, 200 and 100)
GARs from DBpedia (resp. YAGO2, Pokec, Patent, IMDB,
Orkut and synthetic graph). These GARs are satisfied by the
subgraphs pertaining to training data; they have at most 7
pattern nodes and 4.6 literals on average.

Evaluation. The accuracy is evaluated over the test set
of each real-life graph, i.e., the graph excluding the train-
ing data. It is to evaluate the quality of associations de-
duced. Following [13, 26], we treated the original graphs as
“correct” and introduced noises by randomly removing 3%
edges and 3% attributes of each test set, since the quality
of real-life graphs is unknown [60]. We measured the accu-
racy by precision, recall and F-measure, which are defined as
(1) the ratio of removed associations deduced to all associa-
tions deduced by the methods, (2) the ratio of associations
correctly deduced to all the associations removed, and (3)
2 · (precision · recall)/(precision + recall), respectively. As re-
marked earlier, we used Orkut only to test efficiency.

Baselines. Apart from implementing PDeduce (Section 6.2)
and IncDeduce (Section 6.3) in C++, we also compared with

10



the following baselines. (1) A variant PDeduceN of PDeduce,
without enforcing association-guided pruning; and a variant
IncDeduceN of IncDeduce without early checking of affected
associations. (2) The sequential repairing method of [13],
which deduces missing links and attributes, denoted as GRb.
(3) ML link predictors SimplE [35] and ComplEx [54]; they
are trained and tested with same data as above. (4) The link
deduction algorithm in [24] with GPARs, denoted as mGPAR;
and GMend of [23] with an extension of GFDs, which deduces
certain fixes to graphs, on deduction of missing attributes.
(5) A sequential algorithm LinkH that finds missing links
with the Horn rules discovered by AMIE [29].

Among these, GRb, mGPAR, GMend and LinkH are also
rule-based methods. To get a fair comparison, besides the
subclasses of GARs they support, we mined additional rules
using their corresponding discovery methods to make all
rule-based ones employ the same amount of rules.

The experiments were conducted on GRAPE [27], de-
ployed on an HPC cluster of up to 10 machines connected
by 10Gbps links. From each machine we used 2 processors
powered by Intel Xeon 2.2GHz and 64G memory. Each
experiment was run 5 times. The average is reported here.

Experimental results. We next report our findings.

Exp-1: Accuracy. We first tested the accuracy of PDeduce
with all GARs mined. Figures 6(a) to 6(c) report the F-
measure for deducing both missing links and attributes,
missing links only and missing attributes only, respectively,
over five real-life graphs on average. As shown there,
PDeduce consistently outperforms other methods.

(1) It beats rule-based methods GRb, mGPAR, GMend and
LinkH by 29.6%, 40.4%, 17.2% and 36.4% on average, re-
spectively. It does better than mGPAR since it uses (a) GARs
instead of GPARs, and (b) the chase as opposed to a single
“chase step”. It outperforms GRb and GMend by supporting
ML literals. It beats LinkH for both reasons above.

(2) On average PDeduce is 20.8% and 22.1% more accurate
than ML-based SimplE and ComplEx in deducing missing
links, respectively. The impact of plugging which of the two
ML classifiers into PDeduce is not substantial (not shown).

(3) We also conducted experiments to evaluate the accu-
racy of detecting semantic inconsistencies by using the same
amount of GARs and GFDs. The result tells us that GARs
outperforms GFDs by 42% in recall (not shown).

These verify that rules and ML methods put together
work much better than each of them taken separately.

Exp-2: Efficiency. We next evaluated the efficiency of
PDeduce and IncDeduce versus the variants and GRb. The
number ||Σ|| of GARs, the average size |ΣQ| of the patterns
in Σ, the size |∆G| of updates for incremental deduction,
and the number n of processors, i.e., workers for parallel
algorithms were fixed as 120 for DBpedia (90 for YAGO2, 60
for Pokec, 120 for Patent, 120 for IMDB and 120 for Orkut),
4.8, 10%|G| and 12, respectively, unless otherwise stated.

Varying ||Σ||. Varying ||Σ|| from 40 to 200 and 30 to 150, Fig-

ures 7(a)-7(b) report the results on DBpedia and YAGO2, re-
spectively. We can see that (1) the more rules are used, the
longer all methods take, as expected. (2) PDeduce is on aver-
age 2.2 (resp. 14.3) times faster than PDeduceN (resp. GRb),
validating the effectiveness of association-guided pruning.

0

0.2

0.4

0.6

0.8

1

DBpedia YAGO2 Pokec IMDB Patent

A
c
c
u

ra
c
y

 (
F

-m
e
a
s
u

re
)

PDeduce
GRb

(a) Links & attributes

0

0.2

0.4

0.6

0.8

1

DBpedia YAGO2 Pokec IMDB Patent

A
cc

ur
ac

y 
(F

-m
ea

su
re

)

PDeduce
GRb

mGPAR
SimplE

ComplEx
LinkH

(b) Links

0

0.2

0.4

0.6

0.8

1

DBpedia YAGO2 Pokec IMDB Patent

A
cc

ur
ac

y 
(F

-m
ea

su
re

)

PDeduce
GRb

GMend

(c) Attributes

x

x’
zy

person

place

regionprofession
ground

Q8

thing

x’’

person

person

stadium

organization

owner

team

place

location

location

x

y

z

z’

Q9

profession region

(d) Real-life GARs

Figure 6: Effectiveness

Varying |ΣQ|. We varied |ΣQ| from 3 to 7 over DBpedia and

YAGO2. As shown in Figures 7(c)-7(d), (a) all algorithms
take longer on larger |ΣQ|. (b) PDeduce and IncDeduce
are feasible with real-life GARs, e.g., they take 17.7s and
4.2s over DBpedia when |ΣQ| = 5, as opposed to 304.5s by
GRb and 33.9s by PDeduceN. (c) PDeduce outperforms other
batch algorithms, consistent with Figures 7(a) and 7(b).

The results on other graphs are similar (not shown).

Incremental deduction. Varying |∆G| from 5% up to
35% of |G|, Figures 7(e)-7(i) report the following over
DBpedia, YAGO2, Pokec, Patent and Orkut, respectively. (1)
IncDeduce is 6.3 to 1.6 (resp. 5.1 to 1.4, 4.8 to 1.3, 4.7 to 1.6
and 9.5 to 1.7) times faster than PDeduce over the five real-
life graphs, respectively, when |∆G| varies from 5% to 20%.
(2) IncDeduce beats PDeduce even when |∆G| is up to 25%
of |G|. This justifies the need for incremental deduction. (3)
All incremental methods take longer for larger |∆G|, while
the batch ones are indifferent to |∆G|.

Exp-3: Scalability. In the same default setting as Exp-2,
we next evaluated the scalability of deduction approaches.

Varying n. We varied the number n of processors from 4 to
20. As shown in Figures 7(j) to 7(o), (a) PDeduce scales well:
the improvement is 3.1 (resp. 3.6, 3.9, 3.7, 3.6, 3.8) times
over DBpedia (resp. YAGO2, Pokec, IMDB, Patent, Orkut)
when n varies from 4 to 20. (b) IncDeduce works well on
real-life graphs: it takes only 10.6s to process 10% updates
on YAGO2 using 20 processors; the results on other graphs
are consistent. (c) On average, PDeduce beats PDeduceN by
2.7 times, up to 4.1 times. (d) Early checking of affected as-
sociations is effective for incremental association deduction:
IncDeduce beats IncDeduceN by 1.5 times on average.

Synthetic graphs. Varying the scale factor from 0.2 to 1.0,
we tested (incremental) association deduction on synthetic
graphs. As shown in Fig. 7(p), (a) all the batch and incre-
mental algorithms take longer over larger G, as expected.
(b) PDeduce is feasible on large graphs, taking 1756.5s us-
ing 100 GARs on graphs with 300 million nodes and a billion
edges; in contrast, GRb ran out-of-memory.

Exp-4: Case study. Figure 6(d) shows the patterns of
two GARs discovered in the real-life datasets we used.

(1) In Pokec, GAR ϕ8 = Q8(M(x, x′, friend) ∧ x.hobbies =

11



 PDeduce PDeduceN IncDeduce IncDeduceN GRb

 1

 10

 100

 1000

 10000

40 80 120 160 200

T
im

e 
(s

)

(a) Varying ||Σ|| (DBpedia)

 1

 10

 100

 1000

30 60 90 120 150

T
im

e 
(s

)

(b) Varying ||Σ|| (YAGO2)

 1

 10

 100

 1000

3 4 5 6 7

T
im

e 
(s

)

(c) Varying |ΣQ| (DBpedia)

 0.1

 1

 10

 100

 1000

3 4 5 6 7

T
im

e 
(s

)

(d) Varying |ΣQ| (YAGO2)

 10

 100

 1000

 10000

5% 10% 15% 20% 25% 30%

T
im

e 
(s

)

(e) Varying |∆G| (DBpedia, pct.)

 1

 10

 100

 1000

5% 10% 15% 20% 25% 30%

T
im

e 
(s

)

(f) Varying |∆G| (YAGO2, pct.)

 1

 10

 100

 1000

5% 10% 15% 20% 25% 30% 35%

T
im

e 
(s

)

(g) Varying |∆G| (Pokec, pct.)

 10

 100

 1000

5% 10% 15% 20% 25% 30% 35%

T
im

e 
(s

)

(h) Varying |∆G| (Patent, pct.)

 10

 100

 1000

 10000

5% 10% 15% 20% 25% 30%

T
im

e 
(s

)

(i) Varying |∆G| (Orkut, pct.)

 0

 150

 300

 450

4 8 12 16 20

T
im

e 
(s

)

(j) Varying n (DBpedia)

 0

 20

 40

 60

 80

4 8 12 16 20

T
im

e 
(s

)

(k) Varying n (YAGO2)

 0

 60

 120

 180

4 8 12 16 20

T
im

e 
(s

)

(l) Varying n (Pokec)

 200

 400

 600

 800

4 8 12 16 20

T
im

e 
(s

)

(m) Varying n (IMDB)

 0

 50

 100

 150

 200

 250

 300

 350

 400

4 8 12 16 20

T
im

e 
(s

)

(n) Varying n (Patent)

 30

 300

 3000

4 8 12 16 20

T
im

e 
(s

)

(o) Varying n (Orkut)

 50

 500

 5000

0.2 0.4 0.6 0.8 1

T
im

e 
(s

)

(p) Synthetic (scale factor)

Figure 7: Efficiency and scalability

x′.hobbies ∧ x′.hobbies = x′′.hobbies → friend(x, x′′)) sug-
gests that if three people have the same profession, region
and hobbies, and two of them are predicted as friends by
ML classifier, then another friend relationship should also
be established. It identifies a link between two people (IDs:
361348, 361341) because of another one (ID: 361273), where
all three like football and live in Kolarovo.

(2) In DBpedia, GAR ϕ9 = Q9(M(x, y, association) →
tenant(z, x)) predicts associations between stadiums and
sport teams. If a team uses a stadium as its ground at the
same location, and the stadium is owned by an organization
that is predicted to be the association of the team by ML
classifier, then ϕ9 deduces that the team is a tenant of the
stadium. It deduces edge (Chichibunomiya Rugby Stadium,
tenant, Sunwolves) in DBpedia, although the link between
the owner Japan Sport Council and Sunwolves is missing.

Summary. We find the following. (1) GARs are effective
in association deduction. On average our algorithms outper-
form existing methods for link prediction and deducing miss-
ing attributes by 29.1% and 19.4% in accuracy, respectively,
and are 21.3% and 28.2% better than ML-based and rule-
based methods alone. (2) GARs capture 42% more semantic
errors than GFDs in real-life graphs. (3) PDeduce scales

well with large graphs; it beats existing deduction methods
by 18.1 times on graphs with 1.3 billion nodes and edges.
(4) It scales well with the number of processors. (5) Incre-
mental IncDeduce beats batch PDeduce by 4.3 times when
|∆G| is 10%|G| and works better even when |∆G| is up to
25%|G|. (6) Our optimization strategies improve batch and
incremental deduction by 2.7 and 1.5 times, respectively.

8. CONCLUSION
We have proposed GARs to catch missing links/attributes

and semantic inconsistencies in a uniform framework, by
unifying rule-based and ML-based methods. We have settled
the classical problems for GARs by establishing their upper
and lower bounds, all matching. We have developed graph-
centric algorithms for deduction and incremental deduction
of associations in parallel. Our experimental study has ver-
ified that the methods are promising on real-life graphs.

One topic for future work is to further explore applications
of GARs by treating GARs as soft rules, which specify desired
properties but may not be enforced at the expense of the
others. Another topic is to classify non-embedding-based
ML classifiers that can be embedded in GARs. A third topic
is to develop parallel algorithms for discovering GARs.

12



9. REFERENCES
[1] Dbpedia. http://wiki.dbpedia.org.

[2] IMDB.
https://www.imdb.com/interfaces.

[3] Pokec.
http://snap.stanford.edu/data/soc-pokec.html.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[5] G. Adomavicius and A. Tuzhilin. Toward the next gen-
eration of recommender systems: A survey of the state-
of-the-art and possible extensions. TKDE, 17(6):734–
749, 2005.

[6] F. N. Afrati, D. Fotakis, and J. D. Ullman. Enumer-
ating subgraph instances using Map-Reduce. In ICDE,
2013.

[7] R. Agrawal, T. Imieliński, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
SIGMOD Record, 22(2):207–216, 1993.

[8] W. Akhtar, A. Cortés-Calabuig, and J. Paredaens. Con-
straints in RDF. In SDKB, 2010.

[9] B. Bhattarai, H. Liu, and H. H. Huang. CECI: Compact
embedding cluster index for scalable subgraph match-
ing. In SIGMOD, 2019.

[10] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston,
and O. Yakhnenko. Translating embeddings for model-
ing multi-relational data. In NIPS, 2013.

[11] L. Cagliero and A. Fiori. Discovering generalized as-
sociation rules from twitter. Intelligent Data Analysis,
17(4):627–648, 2013.

[12] A. K. Chandra and M. Y. Vardi. The implication prob-
lem for functional and inclusion dependencies is unde-
cidable. SIAM J. Comput., 14(3):671–677, 1985.

[13] Y. Cheng, L. Chen, Y. Yuan, and G. Wang. Rule-based
graph repairing: Semantic and efficient repairing meth-
ods. In ICDE, 2018.

[14] A. Cortés-Calabuig and J. Paredaens. Semantics of con-
straints in RDFS. In AMW, 2012.

[15] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. V. Vleet,
U. Gargi, S. Gupta, Y. He, M. Lambert, B. Livingston,
and D. Sampath. The YouTube video recommendation
system. In RecSys, 2010.

[16] F. Erlandsson, P. Bródka, A. Borg, and H. Johnson.
Finding influential users in social media using associa-
tion rule learning. Entropy, 18(5):164, 2016.

[17] W. Fan, Z. Fan, C. Tian, and X. L. Dong. Keys for
graphs. PVLDB, 8(12):1590–1601, 2015.

[18] W. Fan, C. Hu, X. Liu, and P. Lu. Discovering graph
functional dependencies. In SIGMOD, 2018.

[19] W. Fan, R. Jin, M. Liu, P. Lu, C. Tian, and J. Zhou.
Capturing Associations in Graphs, 2020.
http://homepages.inf.ed.ac.uk/s1837143/

publication/gar/GAR.pdf.

[20] W. Fan, X. Liu, P. Lu, and C. Tian. Catching numeric
inconsistencies in graphs. In SIGMOD, 2018.

[21] W. Fan and P. Lu. Dependencies for graphs. In PODS,
2017.

[22] W. Fan, P. Lu, X. Luo, J. Xu, Q. Yin, W. Yu, and
R. Xu. Adaptive asynchronous parallelization of graph
algorithms. In SIGMOD, 2018.

[23] W. Fan, P. Lu, C. Tian, and J. Zhou. Deducing certain
fixes to graphs. PVLDB, 12(7):752–765, 2019.

[24] W. Fan, X. Wang, Y. Wu, and J. Xu. Association rules
with graph patterns. PVLDB, 8(12):1502–1513, 2015.

[25] W. Fan, Y. Wu, and J. Xu. Adding counting quantifiers
to graph patterns. In SIGMOD, 2016.

[26] W. Fan, Y. Wu, and J. Xu. Functional dependencies for
graphs. In SIGMOD, 2016.

[27] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng,
B. Zhang, Y. Cao, and C. Tian. Parallelizing Sequential
Graph Computations. In SIGMOD, 2017.

[28] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective com-
munity search for large attributed graphs. PVLDB,
9(12):1233–1244, 2016.

[29] L. A. Galárraga, C. Teflioudi, K. Hose, and
F. Suchanek. AMIE: Association rule mining under in-
complete evidence in ontological knowledge bases. In
WWW, 2013.

[30] M. Garey and D. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, 1979.

[31] P. H. Guzzi, M. Milano, and M. Cannataro. Mining
association rules from gene ontology and protein net-
works: Promises and challenges. In ICCS, 2014.

[32] M. Han, H. Kim, G. Gu, K. Park, and W.-S. Han. Ef-
ficient subgraph matching: Harmonizing dynamic pro-
gramming, adaptive matching order, and failing set to-
gether. In SIGMOD, 2019.

[33] J. Hellings, M. Gyssens, J. Paredaens, and Y. Wu. Im-
plication and axiomatization of functional and constant
constraints. Ann. Math. Artif. Intell., 76(3-4):251–279,
2016.

[34] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. PVLDB, 4(11):1123–
1134, 2011.

[35] S. M. Kazemi and D. Poole. Simple embedding for link
prediction in knowledge graphs. In NeurIPS, 2018.

[36] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kon-
tokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van
Kleef, S. Auer, and C. Bizer. DBpedia - A large-scale,
multilingual knowledge base extracted from Wikipedia.
Semantic Web, 6(2):167–195, 2015.

[37] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In SIGKDD, pages 177–187,
2005.

[38] W. Lin, S. A. Alvarez, and C. Ruiz. Efficient adaptive-
support association rule mining for recommender sys-
tems. Data Min. Knowl. Discov., 6(1):83–105, 2002.

[39] Y. Liu, W. Wei, A. Sun, and C. Miao. Exploiting geo-
graphical neighborhood characteristics for location rec-
ommendation. In CIKM, 2014.

[40] X. Luo, L. Liu, L. Bo, Y. Cao, J. Wu, Q. Li, Y. Yang,
K. Yang, and K. Q. Zhu. AliCoCo: Alibaba e-commerce
cognitive concept net. In SIGMOD, 2020.

[41] M. H. Namaki, Y. Wu, Q. Song, P. Lin, and T. Ge.
Discovering graph temporal association rules. In CIKM,
2017.

[42] C. H. Papadimitriou. Computational complexity. John
Wiley and Sons Ltd., 2003.

[43] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and
X. Lin. Scalable big graph processing in MapReduce.
In SIGMOD, 2014.

13



[44] R. Raman, O. van Rest, S. Hong, Z. Wu, H. Chafi, and
J. Banerjee. PGX. ISO: Parallel and efficient in-memory
engine for subgraph isomorphism. In GRADES, 2014.

[45] X. Ren, J. Wang, W.-S. Han, and J. X. Yu. Fast and
robust distributed subgraph enumeration. 12(11):1344–
1356, 2019.

[46] F. Sadri and J. D. Ullman. The interaction between
functional dependencies and template dependencies. In
SIGMOD, 1980.

[47] D. Sánchez, M. A. V. Miranda, L. Cerda, and J. Ser-
rano. Association rules applied to credit card fraud de-
tection. Expert Syst. Appl., 36(2):3630–3640, 2009.

[48] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski,
R. Pascanu, P. Battaglia, and T. Lillicrap. A sim-
ple neural network module for relational reasoning. In
NIPS, 2017.

[49] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo.
Socio-spatial properties of online location-based social
networks. In ICWSM, 2011.

[50] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu.
Parallel subgraph listing in a large-scale graph. In SIG-
MOD, 2014.

[51] Q. Song, Y. Wu, P. Lin, L. X. Dong, and H. Sun.
Mining summaries for knowledge graph search. TKDE,
30(10):1887–1900, 2018.

[52] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
core of semantic knowledge. In WWW, 2007.

[53] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient
subgraph matching on billion node graphs. PVLDB,
5(9):788–799, 2012.

[54] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and

G. Bouchard. Complex embeddings for simple link pre-
diction. In ICML, 2016.

[55] L. G. Valiant. A bridging model for parallel computa-
tion. Commun. ACM, 33(8):103–111, 1990.

[56] Z. Wang, R. Gu, W. Hu, C. Yuan, and Y. Huang.
BENU: Distributed subgraph enumeration with
backtracking-based framework. In ICDE, 2019.

[57] J. Yang and J. Leskovec. Defining and evaluating net-
work communities based on ground-truth. Knowledge
and Information Systems, 42(1):181–213, 2015.

[58] S.-H. Yang, B. Long, A. Smola, N. Sadagopan,
Z. Zheng, and H. Zha. Like like alike: Joint friendship
and interest propagation in social networks. In WWW,
2011.

[59] H. Young. Personalized product recommendations
drive just 7% of visits but 26% of revenue, 2017.
https://www.salesforce.com/blog/2017/11/personalized-
product-recommendations-drive-just-7-visits-26-
revenue.html.

[60] A. Zaveri, D. Kontokostas, M. A. Sherif, L. Bühmann,
M. Morsey, S. Auer, and J. Lehmann. User-driven qual-
ity evaluation of DBpedia. In ISEM, 2013.

[61] C. Zhang and S. Zhang. Association rule mining: mod-
els and algorithms. Springer-Verlag, 2002.

[62] S. Zhang, Y. Tay, L. Yao, and Q. Liu. Quaternion
knowledge graph embeddings. In NIPS, pages 2731–
2741, 2019.

[63] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai,
Y. Li, and J. Zhou. Aligraph: A comprehensive graph
neural network platform. PVLDB, 12(12):2094–2105,
2019.

14



Appendix: Proofs

Proof of Theorem 1. We show the following: (1) any
chasing sequence is finite and consists of at most 4|G|2 ·
|Σ| steps, and (2) all chasing sequences terminate at the
same result. A similar proof was given in [21] for GEDs, an
extension of GFDs with vertex id equality.

(1) Any chasing sequence is finite. Given any terminal chas-

ing sequence ρ = (Gc0 , . . . , Gck ) of graph G by a set Σ of
GARs, we can verify that k ≤ 4|G|2 · |Σ| as follows. Observe
that a chase step does one of the following: (a) at most one
attribute x.A or one edge (x, τ, y) is added to G; (b) one
attribute is assigned a constant; or (c) two attributes are
set to be equal. Note that although there may exist multi-
ple edges between any pair of nodes, the labels of new edges
are constrained by the GARs in Σ, and hence at most |Σ|
edges can be added to G, i.e., Gc0 . Then, we have that
k ≤ 4|G|2 · |Σ| and hence ρ is finite.

(2) All chasing sequences terminate at the same result. We
show this by contradiction. Assume that there exist two
terminal chasing sequences ρ1 = (Gc0 , Gc1 , . . . , Gck ) and
ρ2 = (G′c0 , G

′
c1 , . . . , G

′
cl) of G by Σ with different results,

where Gc0 = G′c0 . Because ρ1 and ρ2 have different results,
we know that Gc0 is consistent and at least one of ρ1 and ρ2

is valid. Assume w.l.o.g. that ρ1 is valid and the chase graph
Gck is consistent. By analyzing the difference between ρ1

and ρ2, we show that ρ1 is not terminal, a contradiction.

More specifically, since ρ1 and ρ2 have different results,
there exist a literal l′ of GAR ϕj and a chase stepG′cj ⇒(ϕj ,h)

G′cj+1
in ρ2 such that G′cj+1

extends G′cj w.r.t. the instan-

tiation h(l′); and h(l′) does not hold in Gck of ρ1. Here
the instantiation h(l′) replaces each variable x in l′ by h(x).
However, one can verify that Gck ⇒(ϕj ,h) Gck+1 is a valid

chase step expanding Gck w.r.t. h(l′), which contradicts the
assumption that sequence ρ1 is terminal. Note that Gck+1

is the chase graph obtained from Gck and h(l′).

To show that Gck⇒(ϕj ,h)Gck+1 is a chase step, we prove
the following properties by induction on the length of ρ2: (a)
all attributes and edges in G′ci (i ∈ [0, l]) are also in Gck ; (b)
if the prediction of the ML modelM in G′ci is true, then the
prediction of M is also true in Gck . If these hold, as h(l′)
does not hold in Gck , and h is a match of the pattern of ϕj

in Gck , we know that Gck⇒(ϕj ,h)Gck+1 is a chase step.

Basic case. At first, we consider the case when i = 0. Since
ρ2 starts with G′c0=Gc0 , and the prediction of M remains
unchanged after training, properties (a) and (b) follow.

Inductive step. Assume that the properties hold for G′ci (i ≤
j). We next show that the properties also hold for G′cj+1

.

Suppose that the (j+1)-th step of ρ2 is G′cj ⇒(ϕ,h) G
′
cj+1

,

where ϕ = Q[x̄](X → Y ) is a GAR in Σ, h is a match of Q
in G′cj such that h(x̄)|=X, l is a literal in Y , and h(l) does

not hold in G′cj . By the inductive hypothesis, we know that

h is also a match of Q in Gck such that h(x̄) |= X. Then
(a) the attributes and edges in G′cj+1

must also be in Gck ,

since otherwise from the fact that h(x̄) |= X in Gck we
can apply ϕ to further extend Gck , which contradicts the
assumption that ρ1 is terminal. Moreover, (b) the values
returned by the ML modelM in Gck are the same as those
obtained in G′cj+1

, sinceM behaves like a Boolean function
after training and all embedding vectors are stable. 2

Proof of Theorem 2. We only need to show that the sat-
isfiability problem is in coNP, since GFDs are a special case
of GARs, and the satisfiability problem for GFDs is already
coNP-hard [21]. To this end, we first establish a characteri-
zation for the satisfiability problem. We then develop an NP
algorithm to check whether a set Σ of GARs is not satisfiable.

Characterization. Based on the chase, we establish the fol-
lowing characterization for the satisfiability problem.

Lemma 1: A set Σ of GARs is satisfiable if and only if
Chase(GΣ,Σ) is consistent, where GΣ is defined as the dis-
joint union of patterns in Σ without any attributes, referred
to as the canonical graph of Σ. 2

We verify Lemma 1 as follows.

(⇐) Assume that Gck = Chase(GΣ,Σ) and the chase graph
Gck is consistent. In the following, we construct a graph
G satisfying Σ from Gck . Note that Gck may not be a
well-defined graph yet, since its nodes and edges may carry
wildcards as labels. To construct graph G, we need to in-
stantiate such wildcards with some labels in Γ.

However, we cannot simply replace wildcards by distinct
labels that do not appear in Gck as in [21], since it may
trigger more chase steps, and lead to conflict. As a simple
example, consider Σ = {ϕ1, ϕ2}, where ϕ1 = Q[x, y](∅ →
x.A = 1), ϕ2 = Q[x, y](M(x, y, ι)→ x.A = 2), and Q[x, y] is
a pattern with two isolated nodes x and y labeled wildcards.
The proof of [21] transforms GΣ to a graph by instantiating
the labels of x and y with, say, a and b, respectively. How-
ever, the chances are that after training, M(v, v′, ι) = true
for any two nodes labeled a and b, respectively, no matter
what a and b we pick. Then we end up with a graph G 6|= Σ.
That is, the proof of [21] fails to build a small model of Σ
due to the presence of ML model M. Hence for GARs we
have to take special care to avoid conflicts introduced by the
prediction of M. Moreover, the additions of new edges in-
troduced during the chase also complicates the consistency
analysis of Chase(GΣ,Σ). Note that none of these problems
was encountered when dealing with GEDs [21].

To resolve possible conflicts introduced by ML prediction,
we can construct G from Gck by replacing wildcards by dis-
tinct new labels that are not used in the training of M.
Given this, it is easy to verify that every pattern in Σ has
a match in G by the definition of GΣ. It remains to show
that G |= Σ. To this end, we show that if G 6|= Σ, then
Gck 6|= Σ, which contradicts Theorem 1 and the semantics
of GARs. It suffices to show the followings: (†) for any GAR
ϕ = Q[x̄](X → Y ) in Σ, any literal l in X or Y , and any
match h of Q in G, we have that (1) h is also a match of Q
in Gck , (2) if h |= l in G, then h |= l also holds in Gck and
(3) if h 6|= l in G, then h 6|= l in Gck . If these hold, when
G 6|= Σ we can find a GAR ϕ = Q[x̄](X → Y ) and a match
h of Q in Gck such that Gck 6|= Σ, a contradiction.

We next show the properties above. For (1), since only
wildcards in Q can match wildcards in Gck and distinct new
labels in G, it is easy to verify that h is a match of Q in Gck .
For (2) and (3), if l is x.A, ι(x, y), x.A = c, x.A = y.B, or
ML literal M(x, y, ι) when neither x nor y is labeled with
wildcard, then the statement holds since G and Gck only
differ in those nodes or edges that are labeled with wildcard.
When l is an ML literal M(x, y, ι) and one of x and y is

15



labeled wildcard, then M(x, y, ι) = false in Gck since M is
not trained with nodes labeled wildcards; meanwhile since
we replace wildcards with distinct new labels that are not
used in the training of M, we also have that M(x, y, ι) =
false in G. Hence properties (2) and (3) follow.

(⇒) Conversely, assume that Σ is satisfiable. We next show
that for any terminal chasing sequence ρ = (Gc0 , . . . , Gck )
of GΣ by Σ, the result Gck is consistent.

(1) To prove this, we first identify a property of ρ. When
Σ is satisfiable, there exists a graph G = (V,E, L, FA) as
shown in the proof above such that each pattern Q of GAR
ϕ in Σ has a match hϕ in G. Then we define a mapping h
from graph GΣ to G by combining all such hϕ. We can show
that for each chase step Gci ⇒(ϕi,hi) Gci+1 (i ∈ [0, k − 1])
in ρ that extends Gci w.r.t. the instantiation of a literal l,
h(x̄) |= l holds in G. This can be proved by induction on
chase steps. Since G |= Σ, we can inductively include all
instantiations in Gck using h [21].

(2) Using the property above, we can show that Gck is con-
sistent. Assume by contradiction that Gck is not consistent.
Then there exist a GAR ϕ = Q[x̄](X → Y ) in Σ and a match
h′ of Q in GΣ such that Gck−1 ⇒(ϕ,h′) Gck and Gck is in-
consistent. However, based on the property proven in (1),
one can verify that all attribute values of Gck are also in G.
Then G is also inconsistent, a contradiction.

Upper bound. We now develop an NP algorithm to decide,
given a set Σ of GARs, whether Σ is not satisfiable, as follows.

(1) Construct the canonical graph GΣ, and guess a se-
quence of steps Gc0 ⇒(ϕ1,h1) Gc1 ⇒ · · · ⇒ Gck−1

⇒(ϕk,hk) Gck ofGΣ = Gc0 by Σ such that k ≤ 4|G|2|Σ|.
(2) For each i∈[1, k], check whether Gci−1 ⇒(ϕi,hi) Gci is a

chase step; if not, reject the guess; otherwise, continue.

(3) For each i ∈ [1, k], check whether Gci−1 ⇒(ϕi,hi) Gci is
invalid; if any of these is invalid, return true.

The correctness of the algorithm follows from Lemma 1.
For the complexity, step (1) is in PTIME by the definition of
canonical graphs; steps (2) and (3) are in PTIME by the fact
that |Gci−1 |≤5|G|2|Σ| and |Gci |≤5|G|2|Σ|. Thus the algo-
rithm is in NP, and the satisfiability problem is in coNP. 2

Proof of Theorem 3. Similar to the proof of the satisfi-
ability problem, we only need to show that the implication
problem for GARs is in NP, since the implication problem
for GFDs is NP-hard [21]. To this end, we first establish a
characterization for the implication problem for GARs, and
then provide an NP algorithm for it.

Lemma 2: For a set Σ of GARs and a GAR ϕ=Q[x̄](X→Y ),
Σ|=ϕ if and only if either X is inconsistent, or all literals in
Y can be inferred from Chase(GQ,Σ), i.e., all instantiations
of literals from Y w.r.t. the one-to-one mapping between Q
and GQ hold in Chase(GQ,Σ). Here GQ denotes the canon-
ical graph of the GAR ϕ extended with literals in X. 2

Proof of Lemma 2. We show the correctness of Lemma 2.

(⇐) Assume that X is inconsistent or all literals in Y can
be inferred from the result Chase(GQ,Σ). Consider the fol-
lowing two cases: (a) Chase(GQ,Σ) is inconsistent; and (b)
Chase(GQ,Σ) is consistent.

Case (a). We have that X is not consistent, or for any graph

G such that Q has a match h in G satisfying h(x̄) |= X,
G 6|= Σ holds. This can be verified along the same lines as
the proof of Lemma 1 given above. Then Σ |= ϕ follows.

Case (b). Let Gck = Chase(GQ,Σ). Then we know that for
any graph G such that G |= Σ and for any match h of Q in
G with h(x̄) |= X, h(x̄) |= Y , i.e., the attribute values in
h(x̄) satisfy all literals in Y ; this is because all literals of Y
can be inferred from Gck . Thus Σ |= ϕ.

(⇒) Suppose that Σ |= ϕ. Let Gck = Chase(GQ,Σ). Con-
sider the two cases above. (a) When Chase(GQ,Σ) is incon-
sistent, we can show that X is inconsistent or all literals in
Y can be inferred from Gck since Gck is inconsistent. (b)
When Chase(GQ,Σ) is consistent, assume by contradiction
that there exists a literal l in Y such that l cannot be in-
ferred from Gck . Using l and Gck we can construct a graph
G such that G |= Σ but G 6|= ϕ. That is, Σ 6|= ϕ, a contra-
diction. The construction of G is similar to the one given in
the proof of Theorem 2, i.e., the wildcards are replaced by
distinct new labels that are not used in the training ofM.

Algorithm. Based on Lemma 2, we give an NP algorithm for
the implication problem. Given a set Σ of GARs and GAR
ϕ, it checks whether Σ |= ϕ as follows.

(1) Construct the canonical graphGQ and guess a sequence
of steps GQ=Gc0 ⇒(ϕ1,h1) Gc1 ⇒ · · ·Gck−1 ⇒(ϕk,hk)

Gck of GQ by Σ such that k ≤ 4|Σ||ϕ|2.

(2) For each i∈[1, k], check whether Gci−1 ⇒(ϕi,hi) Gci is a
chase step; if not, reject the guess; otherwise, continue.

(3) For each i ∈ [1, k], check whether Gci−1 ⇒(ϕi,hi) Gci

is invalid; if any of these chase steps is invalid, return
true; otherwise, continue.

(4) Check whether all literals of Y can be inferred from
Gck ; if so, return true; otherwise, reject the guess.

The correctness of the algorithm follows from Lemma 2.
For its complexity, step (1) is in PTIME by the definition of
GQ; steps (2)-(4) are all in PTIME by the fact that |Gci−1 | ≤
5|ϕ|2|Σ| and |Gci | ≤ 5|ϕ|2|Σ|. Thus, the algorithm is in NP,
and so is the implication problem for GARs. 2

Proof of Theorem 4. We show that the association de-
duction problem is NP-complete.

Upper bound. Given a graph G, a set Σ of GARs, and a
candidate association α of G, we design the following NP
algorithm to verify whether α ∈ deduced(G,Σ).

(1) Guess a chasing sequenceGc0 , . . . , Gck such thatGc0 =
G and k ≤ 4|G|2|Σ|.

(2) Check whether α exists in Gck ; if so, return true.

The correctness of the algorithm follows from Theorem 1.
For the complexity, step (2) is in PTIME, since |Gck | ≤
4|G|2|Σ| (see the proof of Theorem 1). Therefore, the algo-
rithm is in NP, and so is the association deduction problem.

Lower bound. We show that the association deduction prob-
lem is NP-hard by reduction from the 3-coloring problem,
which is known to be NP-complete [30]. The 3-coloring prob-
lem is to decide, given an undirected graph G1 = (V1, E1),
whether there exists a proper 3-coloring µ of nodes in V1

such that for each edge (v1, v2) ∈ E1, µ(v1) 6= µ(v2).
Given undirected G1, we construct a graph G, a set Σ of

GARs, and a candidate association α such that α ∈ deduced

16



Figure 8: Graphs and patterns in Theorem 4

(G,Σ) if and only if G1 has a property 3-coloring. Intu-
itively, we will use G to encode proper 3-coloring, Σ to en-
code G1, and α to check whether G1 has a proper 3-coloring.

(1) Graph G=(V,E, L, FA) is shown in Fig. 8, in which

(a) V = {v0, v1, v2, v3}, where v1, v2 and v3 represent three
different colors, and v0 is a specific node to represent
the candidate association, which will be clear soon;

(b) E = {(vi, 0, vj), (vj , 0, vi) | i, j ∈ [1, 3] ∧ i 6= j} ∪
{(vi, 0, v0) | i ∈ [1, 3]}, i.e., v1, v2 and v3 form a clique,
each node has an edge leading to v0 except itself, and
all edges are labeled the unique ‘0’;

(c) the labeling function is defined as L(v0) = o, L(v1) = r,
L(v2) = g, and L(v3) = b; and

(d) FA is empty, i.e., G does not have any attribute.

(2) The set Σ consists of only one GAR ϕ = Q[x̄](X → Y ),
which is defined as follows.

(a) Pattern Q[x̄]=(VQ, EQ, LQ, µ) is shown in Fig. 8, where

• VQ = V1 ∪ {v0}, i.e., Q consists of all nodes in G1

and an extra node v0;

• EQ = {(u, 0, v), (v, 0, u) | (u, v) ∈ E1)} ∪ {(v, v0) |
v ∈ V1}, i.e., each undirected edge (u, v) in G1 is
represented by two directed edges labeled 0, and
each node in G1 has an edge directing to v0;

• all pattern nodes are labeled wildcard, i.e., LQ(v)
=‘ ’ for all v ∈ VQ; and

• for each pattern node vi ∈ VQ, µ(xi) = vi.

(b) The literals in X and Y are such defined that X is
empty-set, and Y = (x0.A), i.e., the GAR ϕ deduces
the existence of an attribute x0.A.

(3) The candidate association α is defined as the A-attribute
of node v0 in G, i.e., α is v0.A.

It is easy to verify that α ∈ deduced(G,Σ) if and only if
G1 has a proper 3-coloring, by checking the existence of the
matches of pattern Q in graph G. 2

Proof of Theorem 5. We first provide a DP algorithm for
the incremental deduction problem, and then show that the
problem is DP-hard.

Upper bound. Given a graph G, a set Σ of GARs, a batch
update ∆G, and a candidate association α of G or G⊕∆G,
we check whether α ∈ deduced∆(G,∆G,Σ) as follows.

(1) Check whether α ∈ deduced(G,Σ) or α ∈ deduced(G ⊕
∆G,Σ); if not, return false; otherwise, continue.

(2) Check whether α 6∈ deduced(G,Σ) or α 6∈ deduced(G ⊕
∆G,Σ); if not, return false; otherwise, return true.

The correctness is guaranteed by the following.

α ∈ deduced∆(G,∆G,Σ)

⇔α ∈
(
deduced(G,Σ) \ deduced(G⊕∆G,Σ)

)
∨ α ∈

(
deduced(G⊕∆G,Σ) \ deduced(G,Σ)

)
(1)

⇔α ∈
(
deduced(G,Σ) ∪ deduced(G⊕∆G,Σ)

)
\(

deduced(G,Σ) ∩ deduced(G⊕∆G,Σ)
)

(2)

Equation (1) is from the definition of deduced∆(G,∆G,Σ),
and Equation (2) follows from a basic property of set theory,
i.e., (A\B)∪(B\A) = (A∪B)\(A∩B) = (A∪B)∩(A∪B),
where A and B are two sets.

For the complexity, we can verify that step (1) is in NP
and step (2) is in coNP by Theorem 4, and the fact that
NP is closed under union and intersection. Therefore, the
algorithm is in DP; so is the incremental deduction problem.

Lower bound. We show that the problem is DP-hard by
reduction from the critical 3-colorability problem, which is
DP-complete [42]. The critical 3-colorability problem is to
decide, given an undirected graph G1 = (V1, E1), whether
G1 is not 3-colorable, but deleting any vertex makes G1 3-
colorable (see proof of Theorem 4 for 3-colorability).

Given undirected G1, we construct a (directed) graph G,
a set Σ of GARs, a batch update ∆G, and a candidate as-
sociation α such that α∈deduced∆(G,∆G,Σ) if and only
if G1 is not 3-colorable, but deleting any vertex makes G1

3-colorable. Intuitively, we will use G to encode all proper
3-coloring as in the proof of Theorem 4, GARs in Σ to encode
G1 and its node deletions, ∆G to trigger the verification of
3-coloring, and α∈deduced∆(G,∆G,Σ) to encode the fact
that G1 changes from non-3-colorable to 3-colorable.

(1) The graph G is identical to its counterpart graph that is
constructed in the lower bound proof of Theorem 4, which
represents the proper 3-coloring.

(2) The set Σ consists of two groups of GARs. The first group
is to encode the topological structure of G1 and subgraphs of
G1 after node deletions, while the second group is to ensure
that deleting any vertex makes G1 become 3-colorable.

(a) The first group consists of |V1|+ 1 GARs, each of which
is in the form of ϕi=Qi[x̄](∅ → x0.Ai) (i∈[0, |V1|]).
Here Q0[x̄] is built from G1 along the same lines as
in the lower bound proof of Theorem 4 (assuming V1 =
{v1, . . . , v|V1|}), which represents the structure of G1.
Each other pattern Qi[x̄] (i ∈ [1, |V1|]) is derived from
Q0 by (i) removing one pattern node vi from Q0, and
(ii) adding a new edge (v0, τ, v

′
0), where v0 is the extra

pattern node as shown in Fig. 8 and v′0 is another newly
added node carrying label ‘τ ’. Observe that there ex-
ists no node labeled ‘τ ’ in G. Therefore, only ϕ0 may
be applied on G, while none of the patterns in GARs ϕi

with i ∈ [1, |V1|] has a match in G. This can be used
to deduce the candidate association.

(b) The second group consists of only one GAR ϕ|V1|+1 =
Q′[x](x.A1 ∧ . . . ∧ x.A|V1|→x.A0), where Q′ includes a
single pattern node x labeled ‘o’. Intuitively, it states
that if attributes A1, . . . , A|V1| exist at node x, then x
also has attribute A0. Observe that G does not contain
any attribute, and thus ϕ|V1|+1 cannot be applied on G.

(3) The update ∆G only has an insertion of edge (v0, τ, v2),
where v2 is a new node labeled ‘τ ’. Note that after this
update, all GARs in Σ may be applied on G⊕∆G.

(4) The candidate association α is defined as an attribute
17



literal v0.A, where v0 is the only node without outgoing
edges in G. Observe the following with regard to α.

(a) Since ϕ0 does not have edges labeled τ , either it can
be applied on both G and updated G ⊕ ∆G, or ϕ0

cannot be applied on any of the two graphs. In ad-
dition, if G1 is 3-colorable, then attribute v0.A exists
in both deduced(G,Σ) and deduced(G⊕∆G,Σ) by ϕ0,
and hence α 6∈ deduced∆(G,∆G,Σ). On the contrary,
G1 is not 3-colorable if α ∈ deduced∆(G,∆G,Σ).

(b) When G1 is not 3-colorable, the only way to ensure

that α ∈ deduced∆(G,∆G,Σ) is to enforce ϕ|V1|+1.
However, all attributes x0.A1, . . . , x0.A|V1| must exist
in deduced(G ⊕∆G,Σ) to make ϕ|V1|+1 applicable. It
means that all GARs ϕi with i ∈ [1, |V1|] must be ap-
plied on G⊕∆G, i.e., each corresponding to that undi-
rected graph of Qi (i ∈ [1, |V |]) is 3-colorable. That is,
deleting one node makes G1 become 3-colorable.

Based on the construction and observation above, we can
verify that α ∈ deduced∆(G,∆G,Σ) if and only if G is not
3-colorable, but deleting any vertex makes G 3-colorable. 2

18


